A Binary Quantitative Interaction Mapping Approach: Elucidating Multiprotein Complexes in...

Published on ● Video Link: https://www.youtube.com/watch?v=rg7YrZDR01M



Duration: 36:55
61 views
2


Erich Wanker (Max Delbrueck Center for Molecular Medicine)
https://simons.berkeley.edu/talks/binary-quantitative-interaction-mapping-approach-elucidating-multiprotein-complexes-health-and
From Algorithms to Discovery in Genome-Scale Biology and Medicine

Complementary methods are required to fully characterize multiprotein complexes in vitro and in vivo. Affinity purification coupled to mass spectrometry (MS) can identify the composition of protein complexes at scale. However, information on direct contacts between subunits is often lacking. In contrast, solving the 3D structure of protein complexes by X-ray diffraction or cryo-electron microscopy can provide this information, but is not yet scalable for proteome-wide efforts. We have developed quantitative bioluminescence-based methods that facilitate binary interaction mapping in mammalian cells with sensitivity and specificity. We have applied these technologies to study the associations of huntingtin (HTT), a protein of unknown function at the root of Huntington’s disease. We found that HTT controls the abundance of its partner HAP40 in mammalian cells, suggesting that it functions as a scaffold preventing the degradation of partner proteins in mammalian cells. In another systematic screen, we identified high-confidence binary interactions for proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which subsequently were entered into an in silico compound screening. We discovered a new chemical compound that directly targets the interaction between NSP10 and NSP16, which is critical for virus replication. Finally, we defined partners for the AAA ATPase p97, which interacts with many proteins and plays a functional role in various subcellular processes. We found that p97 associates with splicing regulators in an ASPL-dependent manner, suggesting a functional link between the p97:ASPL complex and mRNA processing. Overall, systematic mapping of direct interactions between proteins in higher-order protein assemblies facilitates a better understanding of cellular and disease processes. Also, high-confidence binary interactions are important drug targets with a high potential for innovation in therapy development.




Other Videos By Simons Institute for the Theory of Computing


2022-07-12Outward-Facing Science
2022-07-11Exponentiating Single-Cell Sequencing
2022-07-11Distinct Gene Programs Underpinning ‘Disease Tolerance’ and ‘Resistance’ Against Infections
2022-07-11Determining the Molecular Intermediates Between Genotype and Phenotype
2022-07-11How Genome 3D Organization Regulates Alternative Splicing?
2022-07-11Predicting the Deleteriousness of Genomic Variants – Big and Small
2022-07-11Algorithms for Inferring Phenotypes from Ancient DNA
2022-07-11Mapping Biological Pathways Using Systematic Genetics and Cell Biology
2022-07-11Computational Approaches to Study Interactions Between Mutagenic Processes and Cellular Processes
2022-07-11A Tyrosine Kinase Protein Interaction Map Reveals Targetable EGFR Network Oncogenesis in Lung Cancer
2022-07-11A Binary Quantitative Interaction Mapping Approach: Elucidating Multiprotein Complexes in...
2022-07-11Long-Range Propagation of Genetic Effects in Molecular Networks
2022-07-11Using Large-Scale Clinico-Genomics Data for in silico Clinical Trials and Precision Oncology
2022-07-11A Statistical, Reference-Free Algorithm Subsumes Myriad Problems in Genome Science
2022-07-11Machine Learning for Single-Cell 3D Epigenomics
2022-07-11Understanding Molecular Complexity for Precision Medicine
2022-07-11Genomics of Cancer
2022-07-11Formatting Biological Big Data to Enable (Personalized) Systems Pharmacology
2022-07-11Landscapes of Human cis-regulatory Elements and Transcription Factor Binding Sites...
2022-07-11Spatial Transcriptomics Identifies Neighbourhoods and Molecular Markers of Alveolar Damage...
2022-07-11BANKSY: A Spatial Omics Algorithm that Unifies Cell Type Clustering and Tissue Domain Segmentation



Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
From Algorithms to Discovery in Genome-Scale Biology and Medicine
Erich Wanker