A Game-Theoretic Approach to Offline Reinforcement Learning

Published on ● Video Link: https://www.youtube.com/watch?v=UhqDcHrWn3E



Duration: 57:26
794 views
21


Ching-An Cheng (Microsoft Research)
https://simons.berkeley.edu/talks/game-theoretic-approach-offline-reinforcement-learning
Structure of Constraints in Sequential Decision-Making

Offline reinforcement learning (RL) is a paradigm for designing agents that can learn from existing datasets. Because offline RL can learn policies without collecting new data or expensive expert demonstrations, it offers great potentials for solving real-world problems. However, offline RL faces a fundamental challenge: oftentimes data in real world can only be collected by policies meeting certain criteria (e.g., on performance, safety, or ethics). As a result, existing data, though being large, could lack diversity and have limited usefulness. In this talk, I will introduce a generic game-theoretic approach to offline RL. It frames offline RL as a two-player game where a learning agent competes with an adversary that simulates the uncertain decision outcomes due to missing data coverage. By this game analogy, I will present a systematic and provably correct framework to design offline RL algorithms that can learn good policies with state-of-the-art empirical performance. In addition, I will show that this framework reveals a natural connection between offline RL and imitation learning, which ensures the learned policies to be always no worse than the data collection policies regardless of hyperparameter choices.




Other Videos By Simons Institute for the Theory of Computing


2022-10-19NLTS Hamiltonians from Codes | Quantum Colloquium
2022-10-15Learning to Control Safety-Critical Systems
2022-10-14Near-Optimal No-Regret Learning for General Convex Games
2022-10-14The Power of Adaptivity in Representation Learning: From Meta-Learning to Federated Learning
2022-10-14When Matching Meets Batching: Optimal Multi-stage Algorithms and Applications
2022-10-13Optimal Learning for Structured Bandits
2022-10-13Dynamic Spatial Matching
2022-10-13New Results on Primal-Dual Algorithms for Online Allocation Problems With Applications to ...
2022-10-12Learning Across Bandits in High Dimension via Robust Statistics
2022-10-12Are Multicriteria MDPs Harder to Solve Than Single-Criteria MDPs?
2022-10-12A Game-Theoretic Approach to Offline Reinforcement Learning
2022-10-11The Statistical Complexity of Interactive Decision Making
2022-10-11A Tutorial on Finite-Sample Guarantees of Contractive Stochastic Approximation With...
2022-10-11A Tutorial on Finite-Sample Guarantees of Contractive Stochastic Approximation With...
2022-10-11Stochastic Bin Packing with Time-Varying Item Sizes
2022-10-10Constant Regret in Exchangeable Action Models: Overbooking, Bin Packing, and Beyond
2022-10-08On The Exploration In Load-Balancing Under Unknown Service Rates
2022-10-08Sample Complexity Of Policy-Based Methods Under Off-Policy Sampling And ...
2022-10-08The Compensated Coupling (or Why the Future is the Best Guide for the Present)
2022-10-08Higher-Dimensional Expansion of Random Geometric Complexes
2022-10-08On the Power of Preconditioning in Sparse Linear Regression



Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
Structure of Constraints in Sequential Decision-Making
Ching-An Cheng