Algorithms for Inferring Phenotypes from Ancient DNA

Published on ● Video Link: https://www.youtube.com/watch?v=gSu1qGlmdu8



Duration: 42:30
114 views
6


Tony Capra (UCSF)
https://simons.berkeley.edu/talks/algorithms-inferring-phenotypes-ancient-dna
From Algorithms to Discovery in Genome-Scale Biology and Medicine

Changes in gene regulation were a major driver of the divergence of archaic hominins (AHs)— Neanderthals and Denisovans—and modern humans (MHs). The three-dimensional (3D) folding of the genome is critical for regulating gene expression; however, its role in recent human evolution has not been explored because the degradation of ancient samples does not permit experimental determination of AH 3D genome folding. To fill this gap, we apply deep learning methods for inferring 3D genome organization from DNA sequence to Neanderthal, Denisovan, and diverse MH genomes. Using the resulting 3D contact maps across the genome, we identify 167 distinct regions with diverged 3D genome organization between AHs and MHs. We show that these 3D-diverged loci are enriched for genes related to the function and morphology of the eye, supra-orbital ridges, hair, lungs, immune response, and cognition. Despite these specific diverged loci, the 3D genome of AHs and MHs is more similar than expected based on sequence divergence, suggesting that the pressure to maintain 3D genome organization constrained hominin sequence evolution. We also find that 3D genome organization constrained the landscape of AH ancestry in MHs today: regions more tolerant of 3D variation are enriched for introgression in modern Eurasians. Finally, we identify loci where modern Eurasians have inherited novel 3D genome folding from AH ancestors, which provides a putative molecular mechanism for phenotypes associated with these introgressed haplotypes. In summary, our application of deep learning to predict archaic 3D genome organization illustrates the potential of inferring molecular phenotypes from ancient DNA to reveal previously unobservable biological differences.




Other Videos By Simons Institute for the Theory of Computing


2022-07-14Authorship, Technicity, and Contingency
2022-07-13AI & Humanity on the Ground: Embedding AI into Critical Clinical Decision Making
2022-07-13Hard Choices in Artificial Intelligence
2022-07-13Law's Consumers and Platform Users: How Competing Constructions of Humans Legitimize...
2022-07-12Outward-Facing Science
2022-07-11Exponentiating Single-Cell Sequencing
2022-07-11Distinct Gene Programs Underpinning ‘Disease Tolerance’ and ‘Resistance’ Against Infections
2022-07-11Determining the Molecular Intermediates Between Genotype and Phenotype
2022-07-11How Genome 3D Organization Regulates Alternative Splicing?
2022-07-11Predicting the Deleteriousness of Genomic Variants – Big and Small
2022-07-11Algorithms for Inferring Phenotypes from Ancient DNA
2022-07-11Mapping Biological Pathways Using Systematic Genetics and Cell Biology
2022-07-11Computational Approaches to Study Interactions Between Mutagenic Processes and Cellular Processes
2022-07-11A Tyrosine Kinase Protein Interaction Map Reveals Targetable EGFR Network Oncogenesis in Lung Cancer
2022-07-11A Binary Quantitative Interaction Mapping Approach: Elucidating Multiprotein Complexes in...
2022-07-11Long-Range Propagation of Genetic Effects in Molecular Networks
2022-07-11Using Large-Scale Clinico-Genomics Data for in silico Clinical Trials and Precision Oncology
2022-07-11A Statistical, Reference-Free Algorithm Subsumes Myriad Problems in Genome Science
2022-07-11Machine Learning for Single-Cell 3D Epigenomics
2022-07-11Understanding Molecular Complexity for Precision Medicine
2022-07-11Genomics of Cancer



Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
From Algorithms to Discovery in Genome-Scale Biology and Medicine
Tony Capra