BANKSY: A Spatial Omics Algorithm that Unifies Cell Type Clustering and Tissue Domain Segmentation

Published on ● Video Link: https://www.youtube.com/watch?v=-6kP9RsReRM



Duration: 46:56
144 views
6


Shyam Prabhakar (Genome Institute of Singapore)
https://simons.berkeley.edu/talks/tbd-443
From Algorithms to Discovery in Genome-Scale Biology and Medicine

Each cell type in a solid tissue has a characteristic transcriptome and spatial arrangement, both of which are observable using modern spatial omics assays. Surprisingly however, spatial information is frequently ignored when clustering cells to identify cell types and states. In fact, spatial location is typically considered only when solving the related, but distinct, problem of demarcating tissue domains (which could include multiple cell types). We present BANKSY, an algorithm that unifies cell type clustering and domain segmentation by constructing a product space of cell and neighborhood transcriptomes, representing cell state and microenvironment, respectively. BANKSY's spatial kernel-based feature augmentation strategy improves performance on both tasks when tested on diverse FISH- and sequencing-based spatial omics datasets. Uniquely, BANKSY identified hitherto undetected niche-dependent cell states in mouse brain. We also show that quality control of spatial omics data can be formulated as a domain identification problem and solved using BANKSY. Lastly, BANKSY is orders of magnitude faster and more scalable than existing spatial clustering methods, and thus capable of processing the large datasets generated by emerging spatial technologies. In summary, BANKSY represents an accurate, biologically motivated, scalable, and versatile framework for analyzing spatial omics data.




Other Videos By Simons Institute for the Theory of Computing


2022-07-11A Binary Quantitative Interaction Mapping Approach: Elucidating Multiprotein Complexes in...
2022-07-11Long-Range Propagation of Genetic Effects in Molecular Networks
2022-07-11Using Large-Scale Clinico-Genomics Data for in silico Clinical Trials and Precision Oncology
2022-07-11A Statistical, Reference-Free Algorithm Subsumes Myriad Problems in Genome Science
2022-07-11Machine Learning for Single-Cell 3D Epigenomics
2022-07-11Understanding Molecular Complexity for Precision Medicine
2022-07-11Genomics of Cancer
2022-07-11Formatting Biological Big Data to Enable (Personalized) Systems Pharmacology
2022-07-11Landscapes of Human cis-regulatory Elements and Transcription Factor Binding Sites...
2022-07-11Spatial Transcriptomics Identifies Neighbourhoods and Molecular Markers of Alveolar Damage...
2022-07-11BANKSY: A Spatial Omics Algorithm that Unifies Cell Type Clustering and Tissue Domain Segmentation
2022-07-01Panel on Interpretability in the Law
2022-07-01Platform-supported Auditing Of Social Media Algorithms For Public Interest
2022-07-01Legal Barriers To Interpretable Machine Learning
2022-06-30Interpretability and Algorithmic Fairness
2022-06-30Panel on Interpretability in the Biological Sciences
2022-06-30Machine Learning, Deep Networks and Interpretability in Systems, Cognitive and...
2022-06-30Interpreting Deep Learning Models Of Functional Genomics Data To Decode Regulatory Sequence...
2022-06-30Panel on Interpretability in the Physical Sciences
2022-06-30Interpreting Machine Learning From the Perspective of Nonequilibrium Systems
2022-06-29Interpretability In Atomic-Scale Machine Learning



Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
From Algorithms to Discovery in Genome-Scale Biology and Medicine
Shyam Prabhakar