Code Your Own Llama 4 LLM from Scratch – Full Course

Subscribers:
10,900,000
Published on ● Video Link: https://www.youtube.com/watch?v=biveB0gOlak



Duration: 0:00
41,815 views
1,384


This course is a guide to understanding and implementing Llama 4. ‪@vukrosic‬ will teach you how to code Llama 4 from scratch.

Code and presentations: https://github.com/vukrosic/courses

Code DeepSeek V3 From Scratch:    • Code DeepSeek V3 From Scratch in Pyth...  

⭐ ️ Contents ⭐ ️
0:00:00 Introduction to the course
0:00:15 Llama 4 Overview and Ranking
0:00:26 Course Prerequisites
0:00:43 Course Approach for Beginners
0:01:27 Why Code Llama from Scratch?
0:02:20 Understanding LLMs and Text Generation
0:03:11 How LLMs Predict the Next Word
0:04:13 Probability Distribution of Next Words
0:05:11 The Role of Data in Prediction
0:05:51 Probability Distribution and Word Prediction
0:08:01 Sampling Techniques
0:08:22 Greedy Sampling
0:09:09 Random Sampling
0:09:52 Top K Sampling
0:11:02 Temperature Sampling for Controlling Randomness
0:12:56 What are Tokens?
0:13:52 Tokenization Example: "Hello world"
0:14:30 How LLMs Learn Semantic Meaning
0:15:23 Token Relationships and Context
0:17:17 The Concept of Embeddings
0:21:37 Tokenization Challenges
0:22:15 Large Vocabulary Size
0:23:28 Handling Misspellings and New Words
0:28:42 Introducing Subword Tokens
0:30:16 Byte Pair Encoding (BPE) Overview
0:34:11 Understanding Vector Embeddings
0:36:59 Visualizing Embeddings
0:40:50 The Embedding Layer
0:45:31 Token Indexing and Swapping Embeddings
0:48:10 Coding Your Own Tokenizer
0:49:41 Implementing Byte Pair Encoding
0:52:13 Initializing Vocabulary and Pre-tokenization
0:55:12 Splitting Text into Words
1:01:57 Calculating Pair Frequencies
1:06:35 Merging Frequent Pairs
1:10:04 Updating Vocabulary and Tokenization Rules
1:13:30 Implementing the Merges
1:19:52 Encoding Text with the Tokenizer
1:26:07 Decoding Tokens Back to Text
1:33:05 Self-Attention Mechanism
1:37:07 Query, Key, and Value Vectors
1:40:13 Calculating Attention Scores
1:41:50 Applying Softmax
1:43:09 Weighted Sum of Values
1:45:18 Self-Attention Matrix Operations
1:53:11 Multi-Head Attention
1:57:55 Implementing Self-Attention
2:10:40 Masked Self-Attention
2:37:09 Rotary Positional Embeddings (RoPE)
2:38:08 Understanding Positional Information
2:40:58 How RoPE Works
2:49:03 Implementing RoPE
2:56:47 Feed-Forward Networks (FFN)
2:58:50 Linear Layers and Activations
3:02:19 Implementing FFN

And if you want to code DeepSeek V3 from scratch, here's the Full Course:    • Code DeepSeek V3 From Scratch in Pyth...  

❤ ️ Support for this channel comes from our friends at Scrimba – the coding platform that's reinvented interactive learhttps://scrimba.com/freecodecampdecamp

🎉 Thanks to our Champion and Sponsor supporters:
👾 Drake Milly
👾 Ulises Moralez
👾 Goddard Tan
👾 David MG
👾 Matthew Springman
👾 Claudio
👾 Oscar R.
👾 jedi-or-sith
👾 Nattira Maneerat
👾 Justin Hual

--

Learn to code for free and get a developerhttps://www.freecodecamp.org/mp.org

Read hundreds of articles on programhttps://freecodecamp.org/newsg/news