Dynamic Spatial Matching

Published on ● Video Link: https://www.youtube.com/watch?v=WakjVka7-Uk



Duration: 59:45
583 views
10


Yash Kanoria (Columbia University)
https://simons.berkeley.edu/talks/dynamic-spatial-matching
Structure of Constraints in Sequential Decision-Making

Motivated by a variety of online matching markets, we consider demand and supply which arise i.i.d. in [0,1]^d, and need to be matched with each other while minimizing the expected average distance between matched pairs (the "cost"). We characterize the achievable cost scaling in three models as a function of the dimension d and the amount of excess supply (M or m): (i) Static matching of N demand units with N+M supply units. (ii) A semi-dynamic model where N+M supply units are present beforehand and N demand units arrive sequentially and must be matched immediately. (iii) A fully dynamic model where there are always m supply units present in the system, one supply and one demand unit arrive in each period, and the demand unit must be matched immediately. We show that, despite the matching constraint and uncertainty about the future, cost nearly as small as the distance to the nearest neighbor is achievable in all cases *except* models (i) and (ii) for d=1 and M = o(N). Moreover, the latter is the only case in models (i) and (ii) where excess supply significantly reduces the achievable cost. Work with Akshit Kumar and Yilun Chen introduces a practically motivated variant of model (ii) in which the distributions of supply and demand can be different, and generates new algorithmic and scaling insights.

Links to papers: Paper 1 and Paper 2




Other Videos By Simons Institute for the Theory of Computing


2022-10-25Algorithms Using Local Graph Features to Predict Epidemics
2022-10-24Epidemic Models with Manual and Digital Contact Tracing
2022-10-21Pandora’s Box: Learning to Leverage Costly Information
2022-10-20Thresholds
2022-10-19NLTS Hamiltonians from Codes | Quantum Colloquium
2022-10-15Learning to Control Safety-Critical Systems
2022-10-14Near-Optimal No-Regret Learning for General Convex Games
2022-10-14The Power of Adaptivity in Representation Learning: From Meta-Learning to Federated Learning
2022-10-14When Matching Meets Batching: Optimal Multi-stage Algorithms and Applications
2022-10-13Optimal Learning for Structured Bandits
2022-10-13Dynamic Spatial Matching
2022-10-13New Results on Primal-Dual Algorithms for Online Allocation Problems With Applications to ...
2022-10-12Learning Across Bandits in High Dimension via Robust Statistics
2022-10-12Are Multicriteria MDPs Harder to Solve Than Single-Criteria MDPs?
2022-10-12A Game-Theoretic Approach to Offline Reinforcement Learning
2022-10-11The Statistical Complexity of Interactive Decision Making
2022-10-11A Tutorial on Finite-Sample Guarantees of Contractive Stochastic Approximation With...
2022-10-11A Tutorial on Finite-Sample Guarantees of Contractive Stochastic Approximation With...
2022-10-11Stochastic Bin Packing with Time-Varying Item Sizes
2022-10-10Constant Regret in Exchangeable Action Models: Overbooking, Bin Packing, and Beyond
2022-10-08On The Exploration In Load-Balancing Under Unknown Service Rates



Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
Structure of Constraints in Sequential Decision-Making
Yash Kanoria