Efficient and Targeted COVID-19 Border Testing via Reinforcement Learning

Published on ● Video Link: https://www.youtube.com/watch?v=_HsZh9MGXhU



Duration: 1:01:20
301 views
5


Hamsa Bastani (UPenn)
https://simons.berkeley.edu/talks/efficient-and-targeted-covid-19-border-testing-reinforcement-learning
Epidemics and Information Diffusion

Throughout the coronavirus disease 2019 (COVID-19) pandemic, countries have relied on a variety of ad hoc border control protocols to allow for non-essential travel while safeguarding public health, from quarantining all travellers to restricting entry from select nations on the basis of population-level epidemiological metrics such as cases, deaths or testing positivity rates. Here we report the design and performance of a reinforcement learning system, nicknamed Eva. In the summer of 2020, Eva was deployed across all Greek borders to limit the influx of asymptomatic travellers infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and to inform border policies through real-time estimates of COVID-19 prevalence. In contrast to country-wide protocols, Eva allocated Greece’s limited testing resources on the basis of incoming travellers’ demographic information and testing results from previous travellers. By comparing Eva’s performance against modelled counterfactual scenarios, we show that Eva identified 1.85 times as many asymptomatic, infected travellers as random surveillance testing, with up to 2–4 times as many during peak travel, and 1.25–1.45 times as many asymptomatic, infected travellers as testing policies that utilize only epidemiological metrics. We demonstrate that this latter benefit arises, at least partially, because population-level epidemiological metrics had limited predictive value for the actual prevalence of SARS-CoV-2 among asymptomatic travellers and exhibited strong country-specific idiosyncrasies in the summer of 2020. Our results raise serious concerns on the effectiveness of country-agnostic internationally proposed border control policies that are based on population-level epidemiological metrics. Instead, our work represents a successful example of the potential of reinforcement learning and real-time data for safeguarding public health. Joint work with Kimon Drakopoulos, Vishal Gupta, Ioannis Vlachogiannis, Christos Hadjichristodoulou, Pagona Lagiou, Gkikas Magiorkinis, Dimitrios Paraskevis and Sotirios Tsiodras.




Other Videos By Simons Institute for the Theory of Computing


2022-10-28Just a Few Seeds More: The Inflated Value of Network Data for Diffusion...
2022-10-27Bayesian Learning in Social Networks
2022-10-27Likelihood-based Inference for Stochastic Epidemic Models
2022-10-27Testing, Voluntary Social Distancing, and the Spread of an Infection
2022-10-27Complex Contagions and Hybrid Phase Transitions
2022-10-26Dynamical Survival Analysis: Survival Models for Epidemic
2022-10-26Between-host, within-host Interactions in Simple Epidemiological Models
2022-10-26The Effect of Restrictive Interactions between Susceptible and Infected Individuals...
2022-10-26Linear Growth of Quantum Circuit Complexity
2022-10-26Mathematics of the COVID-19 Pandemics: Lessons Learned and How to Mitigate the Next One
2022-10-25Efficient and Targeted COVID-19 Border Testing via Reinforcement Learning
2022-10-25Random Walks on Simplicial Complexes for Exploring Networks
2022-10-25Functional Law of Large Numbers and PDEs for Spatial Epidemic Models with...
2022-10-25Algorithms Using Local Graph Features to Predict Epidemics
2022-10-24Epidemic Models with Manual and Digital Contact Tracing
2022-10-21Pandora’s Box: Learning to Leverage Costly Information
2022-10-20Thresholds
2022-10-19NLTS Hamiltonians from Codes | Quantum Colloquium
2022-10-15Learning to Control Safety-Critical Systems
2022-10-14Near-Optimal No-Regret Learning for General Convex Games
2022-10-14The Power of Adaptivity in Representation Learning: From Meta-Learning to Federated Learning



Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
Epidemics and Information Diffusion
Hamsa Bastani