If \( \mathrm{P}(\sqrt{2} \sec \theta, \sqrt{2} \tan \theta) \) is a point on the hyperbola whos...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=CzgUZ1l6m4M
If \( \mathrm{P}(\sqrt{2} \sec \theta, \sqrt{2} \tan \theta) \) is a point on the hyperbola whose distance from the origin is \( \sqrt{6} \) where \( \mathrm{P} \) is in the first quadrant then \( \theta= \)
\( \mathrm{P} \)
(A) \( \frac{\pi}{4} \)
(B) \( \frac{\pi}{3} \)
(C) \( \frac{\pi}{6} \)
(D) \( \frac{\pi}{15} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live