Just a Few Seeds More: The Inflated Value of Network Data for Diffusion...

Published on ● Video Link: https://www.youtube.com/watch?v=cYaSRSDRGyw



Duration: 1:04:20
416 views
13


Mohammad Akbarpour (Stanford)
https://simons.berkeley.edu/talks/tbd-487
Epidemics and Information Diffusion

Identifying the optimal set of individuals to first receive information (‘seeds’) in a social network is a widely-studied question in many settings, such as diffusion of information, spread of microfinance programs, and adoption of new technologies. Numerous studies have proposed various network-centrality based heuristics to choose seeds in a way that is likely to boost diffusion. Here we show that, for the classic SIR model of diffusion and some of its generalizations, randomly seeding s + x individuals can prompt a larger diffusion than optimally targeting the best s individuals, for a small x. We prove our results for large classes of random networks, and verify them in several small, real-world networks. Our results identify practically relevant settings under which collecting and analyzing network data to boost diffusion is not cost-effective.




Other Videos By Simons Institute for the Theory of Computing


2022-11-09A Kerfuffle: Differential Privacy and the 2020 Census
2022-11-08Chasing the Long Tail: What Neural Networks Memorize and Why
2022-11-08Concurrent Composition Theorems for all Standard Variants of Differential Privacy
2022-11-08Privacy Management: Achieving the Possimpible
2022-11-07Privacy-safe Measurement on the Web: Open Questions From the Privacy Sandbox
2022-10-29Transmission Neural Networks: From Virus Spread Models to Neural Networks
2022-10-29Spatial Spread of Dengue Virus: Appropriate Spatial Scales for Transmission
2022-10-28A Global Comparison of COVID-19 Variant Waves and Relationships with Clinical and...
2022-10-28Diversity and Inequality in Information Diffusion on Social Networks
2022-10-28Learning through the Grapevine and the Impact of the Breadth and Depth of Social Networks
2022-10-28Just a Few Seeds More: The Inflated Value of Network Data for Diffusion...
2022-10-27Bayesian Learning in Social Networks
2022-10-27Likelihood-based Inference for Stochastic Epidemic Models
2022-10-27Testing, Voluntary Social Distancing, and the Spread of an Infection
2022-10-27Complex Contagions and Hybrid Phase Transitions
2022-10-26Dynamical Survival Analysis: Survival Models for Epidemic
2022-10-26Between-host, within-host Interactions in Simple Epidemiological Models
2022-10-26The Effect of Restrictive Interactions between Susceptible and Infected Individuals...
2022-10-26Linear Growth of Quantum Circuit Complexity
2022-10-26Mathematics of the COVID-19 Pandemics: Lessons Learned and How to Mitigate the Next One
2022-10-25Efficient and Targeted COVID-19 Border Testing via Reinforcement Learning



Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
Epidemics and Information Diffusion
Mohammad Akbarpour