Let \( f(x)=\int \frac{x^{2} d x}{\left(1+x^{2}\right)\left(1+\sqrt{1+x^{2}}\right)} \) and \( f...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=Recgrg2iwU0
Let \( f(x)=\int \frac{x^{2} d x}{\left(1+x^{2}\right)\left(1+\sqrt{1+x^{2}}\right)} \) and \( f(0)=0 \). Then \( f(1) \) is
(a) \( \ln (1+\sqrt{2}) \)
(b) \( \ln (1+\sqrt{2})-\frac{\pi}{4} \)
(c) \( \ln (1+\sqrt{2})+\frac{\pi}{4} \)
(d) \( \ln (3+\sqrt{2})+\frac{\pi}{2} \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live