\( \operatorname{If}\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=p7fIsCwr1LI
\( \operatorname{If}\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ (a+\lambda)^{2} & (b+\lambda)^{2} & (c+\lambda)^{2} \\ (a-\lambda)^{2} & (b-\lambda)^{2} & (c-\lambda)^{2}\end{array}\right|=k \lambda\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right| \)
\( \lambda \neq 0 \), then \( k \) is equal to:
(a) \( 4 \lambda a b c \)
(b) \( -4 \lambda a b c \)
(c) \( 4 \lambda^{2} \)
(d) \( -4 \lambda^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw