Random Walks on Simplicial Complexes for Exploring Networks

Published on ● Video Link: https://www.youtube.com/watch?v=6JIuzEmutks



Duration: 1:04:35
541 views
6


Viet Chi Tran (Université Gustave Eiffel)
https://simons.berkeley.edu/talks/random-walks-simplicial-complexes-exploring-networks
Epidemics and Information Diffusion

Motivated by the discovery of hard-to-find social networks (such as MSM or A natural and well-known way to dPWIDs) or by finding contact-tracing strategies, we consider the question of exploring the topology of random structures (such as a random graph G) by random walks. The usual random walk jumps from a vertex of G to a neighboring vertex, providing information on the connected components of the graph G. The number of these connected components is the Betti number beta0. To gather further information on the higher Betti numbers that describe the topology of the graph, we can consider the simplicial complex C associated to the graph G: a k-simplex (edge for k=1, triangle for k=2, tetrahedron for k=3 etc.) belongs to C if all the lower (k-1)-simplices that constitute it also belong to the C. For example, a triangle belongs to C if its three edges are in the graph G. Several random walks have already been propose recently to explore these structures, mostly in Informatics Theory. We propose a new random walk, whose generator is related to a Laplacian of higher order of the graph, and to the Betti number betak. A rescaling of the walk for k=2 (cycle-valued random walk) is also detailed when the random walk visits a regular triangulation of the torus. We embed the space of chains into spaces of currents to establish the limiting theorem.
Joint work with T. Bonis, L. Decreusefond and Z. Zhang.




Other Videos By Simons Institute for the Theory of Computing


2022-10-27Bayesian Learning in Social Networks
2022-10-27Likelihood-based Inference for Stochastic Epidemic Models
2022-10-27Testing, Voluntary Social Distancing, and the Spread of an Infection
2022-10-27Complex Contagions and Hybrid Phase Transitions
2022-10-26Dynamical Survival Analysis: Survival Models for Epidemic
2022-10-26Between-host, within-host Interactions in Simple Epidemiological Models
2022-10-26The Effect of Restrictive Interactions between Susceptible and Infected Individuals...
2022-10-26Linear Growth of Quantum Circuit Complexity
2022-10-26Mathematics of the COVID-19 Pandemics: Lessons Learned and How to Mitigate the Next One
2022-10-25Efficient and Targeted COVID-19 Border Testing via Reinforcement Learning
2022-10-25Random Walks on Simplicial Complexes for Exploring Networks
2022-10-25Functional Law of Large Numbers and PDEs for Spatial Epidemic Models with...
2022-10-25Algorithms Using Local Graph Features to Predict Epidemics
2022-10-24Epidemic Models with Manual and Digital Contact Tracing
2022-10-21Pandora’s Box: Learning to Leverage Costly Information
2022-10-20Thresholds
2022-10-19NLTS Hamiltonians from Codes | Quantum Colloquium
2022-10-15Learning to Control Safety-Critical Systems
2022-10-14Near-Optimal No-Regret Learning for General Convex Games
2022-10-14The Power of Adaptivity in Representation Learning: From Meta-Learning to Federated Learning
2022-10-14When Matching Meets Batching: Optimal Multi-stage Algorithms and Applications



Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
Epidemics and Information Diffusion
Viet Chi Tran