The differential coefficient of \( a^{\log _{10} \operatorname{cosec}^{-1} x} \), is....
The differential coefficient of \( a^{\log _{10} \operatorname{cosec}^{-1} x} \), is
\( \mathrm{P} \)
(1) \( \frac{a^{\log _{10}\left(\operatorname{cosec}^{-1} x\right)}}{\operatorname{cosec}^{-1} x} \cdot \frac{1}{x \sqrt{x^{2}-1}} \log _{10} a \)
(2) \( -\frac{a^{\log _{10}\left(\operatorname{cosec}^{-1} x\right)}}{\operatorname{cosec}^{-1} x} \cdot \frac{1}{|x| \sqrt{x^{2}-1}} \log _{10} a \)
(3) \( -\frac{a^{\log _{10}\left(\operatorname{cosec}^{-1} x\right)}}{\operatorname{cosec}^{-1} x} \cdot \frac{1}{|x| \sqrt{x^{2}}-1} \log _{a} 10 \)
(4) \( \frac{a^{\log _{10} \operatorname{cosec}^{-1} x}}{\operatorname{cosec}^{-1} x} \cdot \frac{1}{x \sqrt{x^{2}-1}} \log _{a} 10 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-21 | Which of the following sentence is a statement?.... |
2024-01-21 | Which of the following sentence is not a statement?.... |
2024-01-21 | Using \( \lim _{x \rightarrow a}\left(\frac{x^{n}-a^{n}}{x-a}\right)=n a^{n-1} \), answer the fo.... |
2024-01-21 | Which of the following sentence is a statement?.... |
2024-01-21 | If \( f(1)=1 \) and \( f^{\prime}(1)=2 \), then \( \lim _{x \rightarrow 1} \frac{\sqrt{f(x)}-1}{.... |
2024-01-21 | Let \( g(x)=\log f(x) \), where \( f(x) \) is twice differentiable
positive function on \( (0, \.... |
2024-01-21 | Suppose \( f: R \rightarrow R \) is a differentiable function and
\( f(1)=4 \). If \( \lim _{x \.... |
2024-01-21 | Using \( \lim _{x \rightarrow a}\left(\frac{x^{n}-a^{n}}{x-a}\right)=n a^{n-1} \), answer the fo.... |
2024-01-21 | The \( \lim _{x \rightarrow 0} x^{8}\left[\frac{1}{x^{3}}\right] \) (where \( [x] \) is greatest.... |
2024-01-21 | If \( y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+\ldots \infty}}}} \), then \( \frac{d y}{d x} \) is equa.... |
2024-01-21 | The differential coefficient of \( a^{\log _{10} \operatorname{cosec}^{-1} x} \), is.... |
2024-01-21 | Let \( f(x) \) be a polynomial function satisfying
\( f(x)+f\left(\frac{1}{x}\right)=f(x) f\left.... |
2024-01-21 | Let \( a=\min \left\{x^{2}+2 x+3: x \in R\right\} \) and
\( b=\lim _{\theta \rightarrow 0} \frac.... |
2024-01-21 | Let \( f(x) \) be a differentiable function such that
\( f^{\prime}(x)=\sin x+\sin 4 x \cos x \).... |
2024-01-21 | If the normal to the curve \( y=f(x) \) at \( x=0 \) be given
by the equation \( 3 x-y+3=0 \), t.... |
2024-01-21 | For each \( t \in R \), let \( [t] \) denote the greatest integer less
than or equal to \( t \)..... |
2024-01-21 | If [.] denotes the greatest integer function, then
\( \lim _{x \rightarrow 0} \frac{\tan \left(\.... |
2024-01-21 | \( \lim _{x \rightarrow \infty}\left\{\left(\frac{x}{x+1}\right)^{a} a+\sin \frac{1}{x}\right\}^.... |
2024-01-21 | The largest value of the non-negative integer \( a \) for
which \( \lim _{\alpha \rightarrow 1}\.... |
2024-01-21 | The value of
\( \lim _{x \rightarrow 0}\left\{\frac{1}{1 \sin ^{2} x}+2^{\frac{1}{\sin ^{2} x}}+.... |
2024-01-21 | Let \( f: R \rightarrow R \) be such that \( f(1)=3 \) and \( f^{\prime}(1)=6 \).
Then, \( \lim .... |