The Power of Adaptivity in Representation Learning: From Meta-Learning to Federated Learning

Published on ● Video Link: https://www.youtube.com/watch?v=bMv3H5txzq4



Duration: 57:30
717 views
21


Sanjay Shakkottai (University of Texas at Austin)
https://simons.berkeley.edu/talks/power-adaptivity-representation-learning-meta-learning-federated-learning
Structure of Constraints in Sequential Decision-Making

A central problem in machine learning is as follows: How should we train models using data generated from a collection of clients/environments, if we know that these models will be deployed in a new and unseen environment? In the setting of few-shot learning, two prominent approaches are: (a) develop a modeling framework that is “primed” to adapt, such as Model Adaptive Meta Learning (MAML), or (b) develop a common model using federated learning (such as FedAvg), and then fine tune the model for the deployment environment. We study both these approaches in the multi-task linear representation setting. We show that the reason behind generalizability of the models in new environments trained through either of these approaches is that the dynamics of training induces the models to evolve toward the common data representation among the clients’ tasks. In both cases, the structure of the bi-level update at each iteration (an inner and outer update with MAML, and a local and global update with FedAvg) holds the key — the diversity among client data distributions are exploited via inner/local updates, and induces the outer/global updates to bring the representation closer to the ground-truth. In both these settings, these are the first results that formally show representation learning, and derive exponentially fast convergence to the ground-truth representation. Based on joint work with Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sewoong Oh. Papers: https://arxiv.org/abs/2202.03483 , https://arxiv.org/abs/2205.13692




Other Videos By Simons Institute for the Theory of Computing


2022-10-25Efficient and Targeted COVID-19 Border Testing via Reinforcement Learning
2022-10-25Random Walks on Simplicial Complexes for Exploring Networks
2022-10-25Functional Law of Large Numbers and PDEs for Spatial Epidemic Models with...
2022-10-25Algorithms Using Local Graph Features to Predict Epidemics
2022-10-24Epidemic Models with Manual and Digital Contact Tracing
2022-10-21Pandora’s Box: Learning to Leverage Costly Information
2022-10-20Thresholds
2022-10-19NLTS Hamiltonians from Codes | Quantum Colloquium
2022-10-15Learning to Control Safety-Critical Systems
2022-10-14Near-Optimal No-Regret Learning for General Convex Games
2022-10-14The Power of Adaptivity in Representation Learning: From Meta-Learning to Federated Learning
2022-10-14When Matching Meets Batching: Optimal Multi-stage Algorithms and Applications
2022-10-13Optimal Learning for Structured Bandits
2022-10-13Dynamic Spatial Matching
2022-10-13New Results on Primal-Dual Algorithms for Online Allocation Problems With Applications to ...
2022-10-12Learning Across Bandits in High Dimension via Robust Statistics
2022-10-12Are Multicriteria MDPs Harder to Solve Than Single-Criteria MDPs?
2022-10-12A Game-Theoretic Approach to Offline Reinforcement Learning
2022-10-11The Statistical Complexity of Interactive Decision Making
2022-10-11A Tutorial on Finite-Sample Guarantees of Contractive Stochastic Approximation With...
2022-10-11A Tutorial on Finite-Sample Guarantees of Contractive Stochastic Approximation With...



Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
Structure of Constraints in Sequential Decision-Making
Sanjay Shakkottai