The Statistical Complexity of Interactive Decision Making

Published on ● Video Link: https://www.youtube.com/watch?v=36wVctp7POY



Duration: 1:01:11
1,202 views
43


Dylan Foster (Microsoft Research)
https://simons.berkeley.edu/talks/statistical-complexity-interactive-decision-making
Structure of Constraints in Sequential Decision-Making

A fundamental challenge in interactive learning and decision making, ranging from bandit problems to reinforcement learning, is to provide sample-efficient, adaptive learning algorithms that achieve near-optimal regret. This question is analogous to the classical problem of optimal (supervised) statistical learning, where there are well-known complexity measures (e.g., VC dimension and Rademacher complexity) that govern the statistical complexity of learning. However, characterizing the statistical complexity of interactive learning is substantially more challenging due to the adaptive nature of the problem. In this talk, we will introduce a new complexity measure, the Decision-Estimation Coefficient, which is necessary and sufficient for sample-efficient interactive learning. In particular, we will provide: 1. a lower bound on the optimal regret for any interactive decision making problem, establishing the Decision-Estimation Coefficient as a fundamental limit. 2. a unified algorithm design principle, Estimation-to-Decisions, which attains a regret bound matching our lower bound, thereby achieving optimal sample-efficient learning as characterized by the Decision-Estimation Coefficient. Taken together, these results give a theory of learnability for interactive decision making. When applied to reinforcement learning settings, the Decision-Estimation Coefficient recovers essentially all existing hardness results and lower bounds.




Other Videos By Simons Institute for the Theory of Computing


2022-10-15Learning to Control Safety-Critical Systems
2022-10-14Near-Optimal No-Regret Learning for General Convex Games
2022-10-14The Power of Adaptivity in Representation Learning: From Meta-Learning to Federated Learning
2022-10-14When Matching Meets Batching: Optimal Multi-stage Algorithms and Applications
2022-10-13Optimal Learning for Structured Bandits
2022-10-13Dynamic Spatial Matching
2022-10-13New Results on Primal-Dual Algorithms for Online Allocation Problems With Applications to ...
2022-10-12Learning Across Bandits in High Dimension via Robust Statistics
2022-10-12Are Multicriteria MDPs Harder to Solve Than Single-Criteria MDPs?
2022-10-12A Game-Theoretic Approach to Offline Reinforcement Learning
2022-10-11The Statistical Complexity of Interactive Decision Making
2022-10-11A Tutorial on Finite-Sample Guarantees of Contractive Stochastic Approximation With...
2022-10-11A Tutorial on Finite-Sample Guarantees of Contractive Stochastic Approximation With...
2022-10-11Stochastic Bin Packing with Time-Varying Item Sizes
2022-10-10Constant Regret in Exchangeable Action Models: Overbooking, Bin Packing, and Beyond
2022-10-08On The Exploration In Load-Balancing Under Unknown Service Rates
2022-10-08Sample Complexity Of Policy-Based Methods Under Off-Policy Sampling And ...
2022-10-08The Compensated Coupling (or Why the Future is the Best Guide for the Present)
2022-10-08Higher-Dimensional Expansion of Random Geometric Complexes
2022-10-08On the Power of Preconditioning in Sparse Linear Regression
2022-10-07What Functions Do Transformers Prefer to Represent?



Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
Structure of Constraints in Sequential Decision-Making
Dylan Foster