Channels
Videos
Games
Search
the value of the sum in the nth brackets of (1)+(2+3)+(4+5+6+7)+(8+9+10+..+15)+..is
Channel:
Flame Institute
Subscribers:
4,190
Published on
January 4, 2023 9:35:14 AM
● Video Link:
https://www.youtube.com/watch?v=vZSD2SvsQCs
Duration:
0:50
10 views
0
< no description available >
Other Videos By Flame Institute
2023-01-04
1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...upto 20 terms is
2023-01-04
Submmission 1^2+2^2+3^2+...+n^2/1+2+3+..+n=
2023-01-04
if p(n):1+3+5+....+(2n-1)=n^2 is
2023-01-04
if p(n):1+3+5+...+(2n-1)=n^2 is
2023-01-04
(n+2)factorial/(n-1)factorial is divisible by
2023-01-04
2.4+4.7+6.10+...(n-1)terms=
2023-01-04
sum to n terms of the series 1+3+7+15+....is
2023-01-04
2023 01 04 14 25 33
2023-01-04
3/4+15/16+63/64+...n terms=
2023-01-04
for n belong to N,1/5 n^5+1/3 n^3+7/15 n is
2023-01-04
the value of the sum in the nth brackets of (1)+(2+3)+(4+5+6+7)+(8+9+10+..+15)+..is
2023-01-04
submmission from n to r=1(3^r-r)=
2023-01-04
Submmission from n to r=1 (3^r-r)=
2023-01-04
2023 01 04 14 06 48
2023-01-04
3^2n+2^3.n-9 is divisible by
2023-01-04
the inequality n factorial greater than 2^n-1 is true
2023-01-04
for all n belong to N,n^2(n^4-1)is divisible by
2023-01-04
2023 01 04 14 46 53
2023-01-04
Statement 1:for all +ve integrals value of n 3^2n+7 is divisible by 8,2:G.C.F 16 and 88 is 8
2023-01-04
If ak=1/k(k+1) for k=1,2,3....n then submission of (ak)^2=n^2/(n+1)^2,sum of the n terms of a
2023-01-04
Statement 1:n belongs to N product of n(n+1)(n+2) is divisible by 6,2:product of 3 consecutive