Hausdorff Center for Mathematics

Hausdorff Center for Mathematics

Views:
755,490
Subscribers:
9,310
Videos:
2,188
Duration:
71:23:16:07

Hausdorff Center for Mathematics is a YouTube content creator with approximately 9.31 thousand subscribers. He published approximately 2.19 thousand videos which altogether total more than 755.49 thousand views.

Created on ● Channel Link: https://www.youtube.com/channel/UC2F-j2KMho0zVWIPFKWoXoA





Top 100 Videos With The Longest Duration by Hausdorff Center for Mathematics


Video TitleDurationCategoryGame
1.Alain Connes: Geometry and the quantum2:06:13
2.Juan Esteban Rodriguez Camargo: An introduction to geometric Sen theory1:58:20
3.Panel Discussion on Formalization in Mathematics1:57:39
4.Benedetta Noris: A supercritical elliptic equation in the annulus1:50:15
5.Charles Rezk: Elliptic cohomology and elliptic curves (Part 4)1:46:23
6.Yves André: What is… a motivic Galois group1:43:53
7.R. Lazarsfeld: The Equations Defining Projective Varieties part 41:42:53
8.Vortrag "Wo steht die mathematische Forschung?"1:42:15
9.George Boxerp-adic Automorphic Forms, 11:39:20
10.Charles Rezk: Elliptic cohomology and elliptic curves (Part 2)1:39:11
11.Public Talk by Kevin Buzzard: Teaching mathematics to computers1:38:50
12.Camillo De Lellis: De Giorgi and Almgren in a simple setting (part III)1:38:48
13.Yoshihiro Tonegawa: Introduction to Brakke's mean curvature flow (part IV)1:38:33
14.Yoshihiro Tonegawa: Introduction to Brakke's mean curvature flow (part I)1:38:22
15.Yoshihiro Tonegawa: Introduction to Brakke's mean curvature flow (part II)1:37:43
16.R. Lazarsfeld: The Equations Defining Projective Varieties. Part 21:37:35
17.Daniel Faraco: Convex integration and mixing flows (part III)1:36:22
18.Suvrit Sra: Lecture series on Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 3)1:35:58
19.Vortrag "Sind Primzahlen dem Zufall unterworfen?"1:35:53
20.Lipschitz Lecture IV: Kinetic limit for particles interacting through a short range potential1:35:37
21.Charles Rezk: Elliptic cohomology and elliptic curves (Part 1)1:35:20
22.Charles Rezk: Elliptic cohomology and elliptic curves (Part 3)1:35:15
23.Daniel Faraco: Convex integration and mixing flows (part II)1:34:50
24.James Newton - Automorphy Lifting, 41:34:28
25.Eva Viehmann - Shtukas, 31:34:15
26.Yoshihiro Tonegawa: Introduction to Brakke's mean curvature flow (part III)1:33:56
27.James Newton - Automorphy Lifting, 21:32:45
28.Lue Pan - p-adic Automorphic Forms, 31:32:34
29.Lipschitz Lecture II: Expansion in collision histories and Lanford’s theorem1:32:07
30.Camillo De Lellis De Giorgi and Almgren in a simple setting (part IV)1:31:59
31.Camillo De Lellis: De Giorgi and Almgren in a simple setting (part I)1:31:49
32.Daniel Faraco: Convex integration and mixing flows (part IV)1:31:41
33.Kevin Painter: Connecting individual- and population-level models for the movement and organisation11:31:32
34.Camillo De Lellis: De Giorgi and Almgren in a simple setting (part II)1:31:10
35.Rob Stevenson: Adaptive numerical solution methods for PDEs1:31:08
36.Suvrit Sra: Lecture series on Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 2)1:31:05
37.Suvrit Sra: Lecture series on Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1)1:31:02
38.David Ayala: Factorization homology (part 3)1:29:56Vlog
39.Vincent Pilloni - p-adic Automorphic Forms, 21:29:52
40.Toby Gee - Categorical local Langlands, 31:29:40
41.Robert Lipton: Nonlocal theories for free crack propagation in brittle materials (Lecture 1)1:29:08
42.Werner Nahm: Quantum fields as derivatives1:28:16
43.Alison Etheridge: Spatial population models (2/4)1:28:00
44.Alison Etheridge: Spatial population models (1/4)1:27:43
45.Ulrich Bauer: Algebraic perspectives of Persistence1:27:19
46.Daniel Faraco: Convex integration and mixing flows (part I)1:27:18
47.Rob Stevenson: Adaptive wavelet methods and applications1:26:22
48.David Ayala: Factorization homology (part 2)1:25:33Vlog
49.Francis Brown: A guide to motivic periods1:25:20
50.Cong Xue - Shtukas, 21:25:13
51.Martin Raussen: Topological and combinatorial models of directed path spaces1:25:11Vlog
52.Robert Lipton: Nonlocal theories for free crack propagation in brittle materials (Lecture 2)1:24:42
53.Oscar Randal-Williams: Moduli spaces of manifolds (part 2)1:24:08
54.Marek Biskup: Extreme points of two dimensional discrete Gaussian free field part 31:23:52
55.Ran Levi: Topological analysis of neural networks1:23:22Vlog
56.David Ayala: Factorization homology (part 1)1:22:56Vlog
57.Kevin Painter: Connecting individual- and population-level models for the movement and organisation41:22:49
58.Felix Otto: Singular quasi-linear stochastic PDEs II1:22:48
59.Rob Stevenson: Convergence theory of adaptive finite element methods (AFEM)1:22:33
60.Giuseppe Savaré: The Weighted Energy Dissipation WED principle for gradient flows (part 3)1:22:14
61.Felix Otto: Singular quasi-linear stochastic PDEs I1:22:03
62.Francis Bach: Large scale Machine Learning and Convex Optimization (Lecture 2)1:22:02
63.Felix Otto: Singular quasi-linear stochastic PDEs III1:21:56
64.Quiver moduli and applications, Markus Reineke (Bochum), Lecture 31:21:48
65.Judith Ludwigp-adic Geometry, 1: Adic and perfectoid spaces1:21:17
66.Karlheinz Gröchenig: Gabor Analysis and its Mysteries (Lecture 2)1:21:07
67.Felix Klein Lectures 2020: Quiver moduli and applications, Markus Reineke (Bochum), Lecture 41:20:54
68.Lipschitz Lecture III: Kinetic limit for classical particle and waves1:20:44
69.Lipschitz Lecture I: Kinetic limit, general concepts, and the hard sphere gas at low density1:20:42
70.Xinwen Zhu - Categorical local Langlands, 11:20:22
71.Gero Friesecke: Optimal transport with Coulomb cost1:20:08
72.Simon Foucart: Essentials of Compressive Sensing (Lecture 1)1:20:04
73.Fabio Toninelli: (2 + 1)-dimensional growth and Anisotropic KPZ class III1:20:03
74.James Lee: Semi Definite Extended Formulations and Sums of Squares (Part 3)1:19:56
75.Rico Zenklusen: Approximation algorithms for hard augmentation problems, lecture II1:19:46
76.Fabrizio Andreatta: Integral canonical models of orthogonal Shimura varieties1:19:30
77.Oscar Randal-Williams: Moduli spaces of manifolds (part 1)1:19:30
78.Kazuo Murota: Discrete Convex Analysis (Part 2)1:19:03
79.Tom Britton: Mathematical models for epidemics (including Covid-19)1:19:01
80.Nikolaos Zygouras: The 2d KPZ as a marginally relevant disordered system I1:18:41
81.Aaron Sidford: Introduction to interior point methods for discrete optimization, lecture II1:18:10
82.Rob de Jeu: Tessellations, Bloch groups, homology group1:17:59
83.Sean Howe: Differential topology for diamonds1:17:59Vlog
84.Rico Zenklusen: Approximation algorithms for hard augmentation problems, lecture III1:17:54
85.Marc Levine: Refined enumerative geometry (Lecture 2)1:17:49
86.Stefan Friedl: The L2-Alexander function of knots and 3-manifolds (Lecture 2)1:17:45
87.Zoltán Szigeti: Connectivity Problems (Part 1)1:17:44
88.Tadahiro Oh: Singular stochastic nonlinear wave equations II1:17:43
89.An introduction to modified traces, Jonathan Kujawa, Lecture II1:17:38
90.Jean Luc Starck: Sparse Representations and their Application in Astrophysics (Lecture 2)1:17:31
91.Fabio Toninelli: (2 + 1)-dimensional growth and Anisotropic KPZ class II1:17:30
92.Stefan Weinzierl: Modular forms, elliptic polylogarithms and Feynman integrals1:17:17Vlog
93.Judith Ludwig - p-adic Geometry, 2: Topologies, diamonds and the Fargues-Fontaine curve1:17:13
94.Yongnam Lee: Q-Gorenstein Deformations and their applications1:17:10
95.Winter School JTP: Introduction to Fukaya categories, James Pascaleff, Lecture 11:17:05
96.Oscar Randal Williams: Moduli spaces of manifolds (part 3)1:17:00
97.Richard Hain: What is... relative completion?1:16:58
98.Javier Fresan: What is… an exponential period1:16:54
99.Kazuo Murota: Discrete Convex Analysis (Part 1)1:16:36
100.Nikolaos Zygouras: The 2d KPZ as a marginally relevant disordered system II1:16:34