A block \( A \) of mass \( m \mathrm{~kg} \) lies on a block \( B \) of mass \( m \mathrm{~kg} \....
A block \( A \) of mass \( m \mathrm{~kg} \) lies on a block \( B \) of mass \( m \mathrm{~kg} \). \( B \) in turn lies on smooth horizontal plane. The coefficient of friction between \( A \) and \( B \) is \( \mu \). Both the blocks are initially at rest. A horizontal force \( F \) is applied to lower block \( B \) at \( t=0 \) till the lower block \( B \) undergoes a displacement of magnitude \( L \). Match the statements in Column-I with the results in Column-II
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ Column-I } & \multicolumn{2}{|c|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
Work done by \\
friction force on \\
block \( A \) is
\end{tabular} & Positive \\
\hline (B) & \begin{tabular}{l}
Work done by \\
friction force on \\
block \( B \) is
\end{tabular} & (Q) & Negative \\
\hline (C) & \begin{tabular}{l}
Total work done by \\
friction on both the \\
blocks may be
\end{tabular} & (R) & \begin{tabular}{l}
Less than or \\
equal to \( \mu \mathrm{mgL} \) \\
in magnitude
\end{tabular} \\
\hline (D) & \begin{tabular}{l}
Work done by force \\
F on block \( B \) is
\end{tabular} & (S) & \begin{tabular}{l}
Equal to \( \mu \mathrm{mgL} \) \\
in magnitude
\end{tabular} \\
\hline
\end{tabular}
\( \mathrm{P} \)
W
\( \begin{array}{llll}\text { A } & \text { B } & \text { C } & \text { D }\end{array} \)
(1) P,Q Q,R R,S P
(2) \( P, R \quad Q \quad P \quad Q \)
(3) \( P, R \quad Q, R \quad Q \quad P \)
(4) \( P \quad Q \quad Q, R \quad P \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live