\( A \) is a set containing \( \mathrm{n} \) elements, \( A \) subset \( P \) (may be void also)...

Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=ZeOmsHrx8n4



Duration: 11:53
3 views
1


\( A \) is a set containing \( \mathrm{n} \) elements, \( A \) subset \( P \) (may be void also) is selected at random from set \( A \) and the set \( A \) is then reconstructed by replacing the elements of \( P \). A subset \( Q \) (may be void also) of \( A \) is again chosen at random. The probability that
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{|c|}{ Column-II } \\
\hline A. & \( \begin{array}{l}\text { Number of elements in } P \text { is equal } \\
\text { to the number of elements in } Q \text { is }\end{array} \) & p. & \( \frac{{ }^{2 n} C_{n}}{4^{n}} \) \\
\hline B. & \( \begin{array}{l}\text { The number of elements in } P \text { is } \\
\text { more than that in } Q \text { is }\end{array} \) & q. & \( \frac{\left(2^{2 n}-{ }^{2 n} C_{n}\right)}{2^{2 n+1}} \) \\
\hline C. & \( P \cap Q=\phi \) is & r. & \( \frac{{ }^{2 n} C_{n+1}}{2^{n}} \) \\
\hline D. & \( Q \) is subset of \( P \) is & s. & \( \left(\frac{3}{4}\right)^{n} \) \\
\hline & & t. & \( \frac{{ }^{2 n} C_{n}}{4^{n-1}} \) \\
\hline
\end{tabular}
(a) \( \mathrm{A}-\mathrm{p}, \mathrm{B}-\mathrm{q}, \mathrm{C}-\mathrm{s}, \mathrm{D}-\mathrm{s} \)
(b) \( \mathrm{A}-\mathrm{r}, \mathrm{B}-\mathrm{p}, \mathrm{C}-\mathrm{s}, \mathrm{D}-\mathrm{q} \)
(c) \( \mathrm{A}-\mathrm{p}, \mathrm{B}-\mathrm{r}, \mathrm{C}-\mathrm{q}, \mathrm{D}-\mathrm{s} \)
(d) \( \mathrm{A}-\mathrm{r}, \mathrm{B}-\mathrm{s}, \mathrm{C}-\mathrm{p}, \mathrm{D}-\mathrm{q} \)
šŸ“²PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2023-06-09Let \( U \) be the universal set and \( n(x)=k+1 \), the probability of selecting 2 subsets \( A...
2023-06-09Integers \( \mathrm{a}, \mathrm{b}, \mathrm{c} \) and \( \mathrm{d} \) not necessarily distinct,...
2023-06-09Match the column: (a) \( \mathrm{A}-\mathrm{s}, \mathrm{B}-\mathrm{q}, \mathrm{C}-\mathrm{p}, \m...
2023-06-09A square matrix of order \( 3 \times 3 \) is formed using the elements of the set \( \{-2016,0,2...
2023-06-09Calculate the expected value of the sum of two numbers obtained when two fair dice are rolled.
2023-06-09For the 3 events \( A, B \) and \( C, P \) (atleast one occurring) \( =\frac{3}{4} \), \( P( \) ...
2023-06-09Let \( x \) be a non-zero real number. A determinant is chosen from the set of all determinants ...
2023-06-09Person A randomly selects 4 distinct numbers from the set \( \{1,2,3,4,5,6,7,8,9\} \) and arrang...
2023-06-09An anti-aircraft gun can take a maximum of four shots at any plane moving away from it. The prob...
2023-06-09If \( M \) and \( N \) are independent events such that \( 0P(M)1 \) and \( 0P(N)1 \), then: (a)...
2023-06-09\( A \) is a set containing \( \mathrm{n} \) elements, \( A \) subset \( P \) (may be void also)...
2023-06-09If the letter of the word SUCCESS are arranged, then the probability that similar letters occurs...
2023-06-09Comprehension A is a set conatining \( n \) elements. A subset \( P \) of \( \mathrm{A} \) cho...
2023-06-09Comprehension \( \mathrm{A} \) is a set conatining \( n \) elements. A subset \( P \) of \( \m...
2023-06-09One hundred identical coins, each with probability, \( p \), of showing up heads are tossed once...
2023-06-09Comprehension \( \mathrm{A} \) is a set conatining \( n \) elements. A subset \( P \) of \( \m...
2023-06-09\( P(A)=\frac{3}{8} ; P(B)=\frac{1}{2} ; P(A \cup B)=\frac{5}{8} \), which of the following do/d...
2023-06-09Three balls are randomly and independantly tossed into bins numbered with the positive integers ...
2023-06-09If \( E_{1} \) and \( E_{2} \) are two events such that \( P\left(E_{1}\right)=1 / 4, P\left(E_{...
2023-06-09An unbiased coin is tossed \( \mathrm{n} \) times. Let \( X \) denote the number of times head o...
2023-06-09A pair of fair dice having six faces numbered from 1 to 6 are thrown once, suppose two events \(...