A uniformly charged solid sphere of radius \( \mathrm{R} \) has potential \( \mathrm{V}_{0} \) (measured with respect to \( \infty \) ) on its
\( \mathrm{P} \) surface. For this sphere the equipotential surfaces with potentials \( \frac{3 \mathrm{~V}_{0}}{2}, \frac{5 \mathrm{~V}_{0}}{4}, \frac{3 \mathrm{~V}_{0}}{4} \) and \( \frac{\mathrm{V}_{0}}{4} \) have
W radius \( R_{1}, R_{2}, R_{3} \) and \( R_{4} \) respectively. Then
(A) \( \mathrm{R}_{1}=0 \) and \( \mathrm{R}_{2}\left(\mathrm{R}_{4}-\mathrm{R}_{3}\right) \)
(B) \( 2 \mathrm{R}\mathrm{R}_{4} \)
(C) \( \mathrm{R}_{1}=0 \) and \( \mathrm{R}_{2}\left(\mathrm{R}_{4}-\mathrm{R}_{3}\right) \)
(D) \( R_{1} \neq 0 \) and \( \left(R_{2}-R_{1}\right)\left(R_{4}-R_{3}\right) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live