Consider a square matrix \( \mathrm{A} \) of order 2 which has its elements as 0,1,2 and 4. Let \( \mathrm{N} \) denote the number of such matrices, all elements of which are distinct.
Column-I
(A) Possible non-negative value of \( \operatorname{det}(\mathrm{A}) \) is
(p) 2
P
W
(B) Sum of values of determinants corresponding to \( \mathrm{N} \) matrices is
(q) 4
(C) If absolute value of \( (\operatorname{det}(\mathrm{A})) \) is least, then possible value of \( |\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))| \)
\( (\mathrm{r})-2 \)
(D) If \( \operatorname{det}(\mathrm{A}) \) is algebraically least, then possible value of \( \operatorname{det}\left(4 \mathrm{~A}^{-1}\right) \) is
(s) 0
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live