Density of a unit cell is represented as \( \rho=\frac{\text { Effective no. of atom }(\mathrm{s...
Density of a unit cell is represented as
\( \rho=\frac{\text { Effective no. of atom }(\mathrm{s}) \times \text { Atomic mass } / \text { formula mass }}{\text { Volume of a unit cell }}=\frac{Z \cdot M}{N_{A} \cdot a^{3}} \)
where, mass of unit cell = mass of effective no. of atom(s) or ion(s).
\( M= \) At. mass/formula mass
\( \begin{aligned} N_{A} &=\text { Avogadro's no. } \Rightarrow 6.023 \times 10^{23} \\ a &=\text { edge length of unit cell } \end{aligned} \)
Silver crystallizes in a fcc lattice and has a density of \( 10.6 \mathrm{~g} / \mathrm{cm}^{3} \). What is the length of an edge of the unit cell?
(a) \( 40.7 \mathrm{~nm} \)
(b) \( 0.2035 \mathrm{~nm} \)
(c) \( 0.101 \mathrm{~nm} \)
(d) \( 4.07 \mathrm{~nm} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live