Given two vectors \( \vec{A}==3 \hat{i}+4 \hat{j} \) and \( \vec{B}...
Given two vectors \( \vec{A}==3 \hat{i}+4 \hat{j} \) and \( \vec{B}==\hat{i}+\hat{j} \cdot \theta \) is the angle between \( \vec{A} \) and \( \vec{B} \). Which of the following state-
\( \mathrm{P} \) ments is/are correct?
W
(1) \( |\vec{A}| \cos \theta\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right) \) is the component of \( \vec{A} \) along \( \vec{B} \).
(2) \( |\vec{A}| \sin \theta\left(\frac{\hat{i}-\hat{j}}{\sqrt{2}}\right) \) is the component of \( \vec{A} \) perpendicular to \( \vec{B} \).
(3) \( |\vec{A}| \cos \theta\left(\frac{\hat{i}-\hat{j}}{\sqrt{2}}\right) \) is the component of \( \vec{A} \) along \( \vec{B} \).
(4) \( |\vec{A}| \sin \theta\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right) \) is the component of \( \vec{A} \) perpendicular to \( \vec{B} \).
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live