If \( 1, \alpha_{1}, \alpha_{2}, \alpha_{3} \) and \( \alpha_{4} \) are the roots of \( z^{5}-1=...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=TuiQw6GHTyQ
If \( 1, \alpha_{1}, \alpha_{2}, \alpha_{3} \) and \( \alpha_{4} \) are the roots of \( z^{5}-1=0 \) and \( \omega \) is a cube roots of unity, then \( (\omega-1)\left(\omega-\alpha_{1}\right)\left(\omega-\alpha_{2}\right)(\omega \) \( \left.\alpha_{3}\right)\left(\omega-\alpha_{4}\right)+\omega \) is equal to
(A) \( 0 \)
(B) \( -1 \)
(C) \( -2 \)
(D) \( 1 \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live