If \( f \) is a positive function such that \( f(x+T)=f(x)(T0), \forall \) \( x \in R \), then \...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=NAOGDyY9qWg
If \( f \) is a positive function such that \( f(x+T)=f(x)(T0), \forall \) \( x \in R \), then
\[
\lim _{n \rightarrow \infty} n\left(\frac{f(x+T)+2 f(x+2 T)+\ldots+n f(x+n T)}{f(x+T)+4 f(x+4 T)+\ldots+n^{2} f\left(x+n^{2} T\right)}\right)=
\]
(a) 2
(b) \( \frac{2}{3} \)
(c) \( \frac{3}{2} \)
(d) None of these
๐ฒPW App Link - https://bit.ly/YTAI_PWAP
๐PW Website - https://www.pw.live