If \( \int \frac{1}{(\sin x+4)(\sin x-1)} d x \) \( =A \frac{1}{\tan \frac{x}{2}-1}+B \tan ^{-1}...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=_c7BNK_SUh4
If \( \int \frac{1}{(\sin x+4)(\sin x-1)} d x \)
\( =A \frac{1}{\tan \frac{x}{2}-1}+B \tan ^{-1}(f(x))+C \), then
(A) \( A=\frac{1}{5}, B=\frac{-2}{5 \sqrt{15}}, f(x)=\frac{4 \tan x+3}{\sqrt{15}} \)
(B) \( A=-\frac{1}{5}, B=\frac{1}{\sqrt{15}}, f(x)=\frac{4 \tan (x / 2)+1}{\sqrt{15}} \)
(C) \( A=\frac{2}{5}, B=\frac{-2}{5}, f(x)=\frac{4 \tan x+1}{5} \)
(D) \( A=\frac{2}{5}, B=\frac{-2}{5 \sqrt{15}}, f(x)=\frac{4 \tan x / 2+1}{\sqrt{15}} \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live