If \( \mathrm{A} \) is a symmetric and \( \mathrm{B} \) skew symmet...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=fu9Vf14emh8
If \( \mathrm{A} \) is a symmetric and \( \mathrm{B} \) skew symmetric matrix and \( \mathrm{A}+\mathrm{B} \) is non singular and \( \mathrm{C}=(\mathrm{A}+\mathrm{B})^{-1}(\mathrm{~A}-\mathrm{B}) \) then \( \mathrm{C}^{\mathrm{T}} \mathrm{AC} \)
(A) \( \mathrm{A}+\mathrm{B} \)
(B) \( \mathrm{A}-\mathrm{B} \)
(C) \( \mathrm{A} \)
(D) \( B \)
\( \mathrm{P} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw