If \( \mathrm{f}(\mathrm{x})=[\mathrm{x}]-\left[\frac{\mathrm{x}}{4...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=Pb2_OjmAXS0
If \( \mathrm{f}(\mathrm{x})=[\mathrm{x}]-\left[\frac{\mathrm{x}}{4}\right], \mathrm{x} \in \mathrm{R} \), where \( [\mathrm{x}] \) denotes the greatest integer function, then :
[JEE Main - 2019(April)]
\( \mathrm{P} \)
(1) Both \( \lim _{x \rightarrow 4^{-}} f(x) \) and \( \lim _{x \rightarrow 4^{+}} f(x) \) exist but are not equal
W
(2) \( \lim _{x \rightarrow 4^{-}} f(x) \) exists but \( \lim _{x \rightarrow 4^{+}} f(x) \) does not exist
(3) \( \lim _{x \rightarrow 4^{+}} f(x) \) exists but \( \lim _{x \rightarrow 4^{-}} f(x) \) does not exist
(4) \( f \) is continuous at \( x=4 \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw