If \( z \) is any complex number satisfying \( |z-3-2 i| \leq 2 \),... VIDEO
If \( z \) is any complex number satisfying \( |z-3-2 i| \leq 2 \), where \( i=\sqrt{-1} \), then the minimum value of \( |2 z-6+5 i| \),
\( \mathrm{P} \) is
[IIT-JEE 2011, 4M]
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2023-03-21 Let \( \omega \neq 1 \) be a complex cube root of unity.
If \( \lef... 2023-03-21 Let \( z_{k}=\cos \left(\frac{2 k \pi}{10}\right)+i \sin \left(\fra... 2023-03-21 Let \( \quad S=S_{1} \cap S_{2} \cap S_{3} \), where
\[
\begin{arra... 2023-03-21 Let complex numbers \( \alpha \) and \( \frac{1}{\bar{\alpha}} \) l... 2023-03-21 The maximum value of \( \left|\arg \left(\frac{1}{1-z}\right)\right... 2023-03-21 Let \( w=e^{i \pi / 3} \), where \( i=\sqrt{-1} \) and \( a, b, c, ... 2023-03-21 If \( \omega(\neq 1) \) is a cube root of unity and \( (1+\omega)^{... 2023-03-21 Let \( \alpha \) and \( \beta \) be real and \( z \) be a complex n... 2023-03-21 The set \( \left\{\operatorname{Re}\left(\frac{2 i z}{1-z^{2}}\righ... 2023-03-21 Let \( \omega \) be the complex number \( \cos \frac{2 \pi}{3}+i \s... 2023-03-21 If \( z \) is any complex number satisfying \( |z-3-2 i| \leq 2 \),... 2023-03-21 The number of complex numbers such that \( |z-1|=|z+1|=|z-i| \), wh... 2023-03-21 If \( \alpha \) and \( \beta \) are the roots of the equation \( x^... 2023-03-21 Let \( z_{1} \) and \( z_{2} \) be two distinct complex numbers and... 2023-03-21 \( \mathrm{I}^{f} \omega=\frac{z}{z-\frac{1}{3} i} \) and \( |\omeg... 2023-03-21 Let \( A, B \) and \( C \) be three sets of complex numbers as defi... 2023-03-21 If one of the vertices of the square circumscribing the circle \( |... 2023-03-21 Prove that the roots of the equation \( 8 x^{3}-4 x^{2}-4 x+1=0 \) ... 2023-03-21 If \( \omega \) is a cube root of unity but not equal to 1 , then m... 2023-03-21 If \( z_{1} \) and \( z_{2} \) are two non-zero complex numbers, su... 2023-03-21 If \( 1, \omega, \omega^{2} \) are the cube roots of unity, then th...