Let \( f: R \rightarrow R \) satisfy the equation \( f(x+y)=f(x) \c...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=O3uZEK4-AP8
Let \( f: R \rightarrow R \) satisfy the equation \( f(x+y)=f(x) \cdot f(y) \)
\( \mathrm{P} \) for all \( x, y \in R \) and \( f(0) \neq 0 \) for any \( x \in R \). If the
W) function \( f \) is differentiable at \( x=0 \) and \( f^{\prime}(0)=2 \), then \( \lim _{h \rightarrow 0} \frac{1}{2}(f(h)-1) \) is equal to
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw