Let \( f(x)=\left\{\begin{array}{cc}\beta x^{2}+3, & -\infty<x<-1 \\ 2 x+\alpha, &...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=_E06KdmTIN4
Let \( f(x)=\left\{\begin{array}{cc}\beta x^{2}+3, & -\infty<x<-1 \\ 2 x+\alpha, & -1 \leq x<\infty\end{array}\right. \) and \( g(x)=\left\{\begin{array}{cc}x+4, & 0 \leq x \leq 8 \\ -3 x-2, & -\infty<x<0\end{array}\right. \) If \( \alpha=2 \) and \( \beta=3 \), then range of \( g(f(x)) \) is equal to:
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live