Let there be a spherically symmetric charge P distribution with charge density varying as W \( ...
Let there be a spherically symmetric charge
P distribution with charge density varying as
W \( \rho(r)=\rho_{0}\left(\frac{5}{4}-\frac{r}{R}\right) \) upto \( r=R \), and \( \rho(r)=0 \) for \( r \) \( R \), where \( \mathrm{r} \) is the distance from the origin. The electric field at a distance \( r(rR) \) from the origin is given by
(A) \( \frac{4 \pi \rho_{0} r}{3 \varepsilon_{0}}\left(\frac{5}{3}-\frac{r}{R}\right) \)
(B) \( \frac{\rho_{0} r}{4 \varepsilon_{0}}\left(\frac{5}{3}-\frac{r}{R}\right) \)
(C) \( \frac{4 \rho_{0} r}{3 \varepsilon_{0}}\left(\frac{5}{4}-\frac{r}{R}\right) \)
(D) \( \frac{\rho_{0} r}{3 \varepsilon_{0}}\left(\frac{5}{4}-\frac{r}{R}\right) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live