Let \( z_{1}, z_{2} \) be two complex numbers such that \( \left|z_{1}+z_{2}\right|=\left|z_{1}\...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=atleBSiyO70
Let \( z_{1}, z_{2} \) be two complex numbers such that \( \left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right| \). Then,
(A) \( \arg \left(z_{1}\right)=\arg \left(z_{2}\right) \)
(B) \( \arg \left(z_{1}\right)+\arg \left(z_{2}\right)=\frac{\pi}{2} \)
(C) \( \left|z_{1}\right|=\left|z_{2}\right| \)
(D) \( z_{1} z_{2}=1 \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live