Machine learning assisted hyper-heuristics for online combinatorial optimization problems

Subscribers:
343,000
Published on ● Video Link: https://www.youtube.com/watch?v=AJ-HFOFkU40



Duration: 27:56
470 views
9


2022 Data-driven Optimization Workshop: Machine learning assisted hyper-heuristics for online combinatorial optimization problems

Speaker: Ruibin Bai, The University of Nottingham Ningbo China

In the past decade, considerable advances have been made in the field of computational intelligence and operations research. However, the majority of these optimization approaches have been developed for deterministically formulated problems, the parameters of which are often assumed perfectly predictable prior to problem-solving. In practice, this strong assumption unfortunately contradicts the reality of many real-world problems which are subject to different levels of uncertainties. The solutions derived from these deterministic approaches can rapidly deteriorate during execution due to the over-optimization without explicit consideration of the uncertainties. To address this research gap, two data-driven hyper-heuristic frameworks are investigated. This talk will present the main ideas of the methods and their performance for two combinatorial optimization problems: a real-world container terminal truck routing problem with uncertain service times and the well-known online 2D strip packing problem. The talk shall briefly describe a port digital twin system developed by our team for the purpose of integrated optimization of multiple port operations.




Other Videos By Microsoft Research


2023-01-24SmartKC: A Low-cost, Smartphone-based Corneal Topographer
2023-01-11MSR-IISc AI Seminar Series: On Learning-Aware Mechanism Design - Michael I. Jordan
2022-12-22Tongue-Gesture Recognition in Head-Mounted Displays
2022-12-15Global Renewables Watch - AI for Good Lab - Geospatial
2022-12-15Toward a Healthy Research Ecosystem for Large Language Models | Panel Discussion
2022-12-14Joint Pricing and Inventory Management with Demand Learning
2022-12-14SITI 2022 - Panel Discussion and moderated Q&A session
2022-12-12Machine Learning for Combinatorial Optimization: Some Empirical Studies
2022-12-12Online Facility Location with Predictions
2022-12-12Adaptive Best-of-Both-Worlds Algorithm for Heavy-Tailed Multi-Armed Bandits
2022-12-12Machine learning assisted hyper-heuristics for online combinatorial optimization problems
2022-12-06Personality Predictions from Automated Video Interviews: Explainable or Unexplainable Models?
2022-12-06Responsible AI: An Interdisciplinary Approach | Panel Discussion
2022-12-06Personalizing Responsibility within AI Systems: A Case for Designing Diversity
2022-12-06Evidence-based Evaluation for Responsible AI
2022-12-06Towards Trustworthy Recommender Systems: From Shallow Models to Deep Models to Large Models
2022-12-06Development of a Game-Based Assessment to Measure Creativity
2022-12-06Interpretability, Responsibility and Controllability of Human Behaviors
2022-12-06On the Adversarial Robustness of Deep Learning
2022-12-06The Long March Towards AI Fairness
2022-12-06Towards Human Value Based Natural Language Processing (NLP)