Match the statement of Column I with the value of Column II. \begin{tabular}{|c|c|c|c|} \hline \....
Match the statement of Column I with the value of Column II.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ Column I } & \multicolumn{2}{|c|}{\begin{tabular}{l}
Column \\
II
\end{tabular}} \\
\hline (A) & \begin{tabular}{l}
The number of solutions of the \\
equation \( |\tan 2 x|=\sin x ; \mathrm{x} \in[0, \pi] \)
\end{tabular} & (i) & \\
\hline (B) & \begin{tabular}{l}
The value of \( 4 \tan \frac{\pi}{16}-4 \tan ^{3} \frac{\pi}{16} \) \\
\( +6 \tan ^{2} \frac{\pi}{16}-\tan ^{4} \frac{\pi}{16}+1 \)
\end{tabular} & (ii) & 4 \\
\hline (C) & \begin{tabular}{l}
If the equation \( \tan (p \cot x)=\cot p(\tan \) \\
\( x) \) has a solution in \( (0, x)-\left\{\frac{\pi}{2}\right\} \), then \\
\( \frac{4}{\pi} P_{\max } \) is
\end{tabular} & (iii) & 3 \\
\hline (iv) & \begin{tabular}{l}
The value of \( \frac{2 x}{\pi} \) in \( \left[\begin{tabular}{ll}
0\right. \), & \( 2 \pi] \)
\end{tabular}\( ] \) if \\
\( 5^{\cos ^{2} 2 x+2 \sin ^{2} x}+5^{2 \cos ^{2} x+\sin ^{2} 2 x}=126 \) \\
has a solution
\end{tabular} & (iv) & 2 \\
\hline
\end{tabular}
(1) (A)-(iii), (B)-(iv), (C)-(i), (D)-(ii)
(2) (A)-(ii), (B)-(iv), (C)-(i), (D)-(i), ( iii)
(3) (A)-(iii), (B)-(i), (C)-(iv), (D)-(ii)
(4) (A)-(iv), (B)-(i), (C)-(ii), (D)-(i),(iii)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live