Match the values of \( x \) given in Column-II satisfying the exponential equation given in Colu...
Match the values of \( x \) given in Column-II satisfying the exponential equation given in Column-I (Do not verify). Remember that for \( a0 \), the terms \( a^{x} \) is always greater than zero \( \forall x \in R \).
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{1}{|c|}{ Column-I } & Column-II \\
\hline A. & \( 5^{x}-24=\frac{25}{5^{x}} \) & p. & -3 \\
\hline B. & \( \left(2^{x+1}\right)\left(5^{x}\right)=200 \) & q. & -2 \\
\hline C. & \( 4^{2 / x}-5\left(4^{1 / x}\right)+4=0 \) & r. & -1 \\
\hline D. & \( 2^{2 x+1}-33\left(2^{x-1}\right)+4=0 \) & s. & 0 \\
\hline E. & \( \frac{2^{x-1} \cdot 4^{x+1}}{8^{x-1}}=16 \) & t. & 1 \\
\hline F. & \( 3^{2 x+1}+10\left(3^{x}\right)+3=0 \) & u. & 2 \\
\hline G. & \( 64\left(9^{x}\right)-84\left(12^{x}\right)+27\left(16^{x}\right)=0 \) & v. & 3 \\
\hline H. & \( 5^{2 x}-7^{x}-5^{2 x}(35)+7^{x}(35)=0 \) & w. & None \\
\hline
\end{tabular}
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live