Matrix \( \mathrm{A} \) is such that \( \mathrm{A}^{2}=2 \mathrm{~A}-\mathrm{I} \), where \( \ma...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=BJblLdZTXAg
Matrix \( \mathrm{A} \) is such that \( \mathrm{A}^{2}=2 \mathrm{~A}-\mathrm{I} \), where \( \mathrm{I} \) is the identity matrix. Then for \( \mathrm{n} \geq 2, \mathrm{~A}^{\mathrm{n}}= \)
\( \mathrm{P} \)
(1) \( \mathrm{nA}-(\mathrm{n}-1) \mathrm{I} \)
(2) \( \mathrm{nA}-\mathrm{I} \)
W
(3) \( 2^{n-1} A-(n-1) I \)
(4) \( 2^{n-1} \mathrm{~A}-\mathrm{I} \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live