Solve the following pair of equations of reducing \( \mathrm{P} \) them into a pair of linear eq...
Solve the following pair of equations of reducing
\( \mathrm{P} \) them into a pair of linear equations.
W
(i) \( \frac{2}{x}+\frac{3}{y}=22, \frac{5}{x}-\frac{4}{y}=9, x, y \neq 0 \).
(ii) \( \frac{a^{2}}{x}-\frac{b^{2}}{y}=0, \frac{a^{2} b}{x}+\frac{b^{2} a}{y}=a+b, x, y \neq 0 \)
(iii) \( \frac{5}{x}+6 y=13, \frac{3}{x}+4 y=7, x \neq 0 \)
(iv) \( x+\frac{6}{y}=6,3 x-\frac{8}{y}=5, y \neq 0 \)
(v) \( 4 x+6 y=3 x y, 8 x+9 y=5 x y, x y \neq 0 \)
(vi) \( \frac{2}{x}+\frac{3}{y}=\frac{9}{x y}, \frac{4}{x}+\frac{9}{y}=\frac{21}{x y}, x \neq 0, y \neq 0 \)
(vii) \( \frac{3 y-x}{x y}=-9, \frac{2 y+3 x}{x y}=5, x y \neq 0 \)
(viii) \( \frac{5}{x+1}-\frac{2}{y-1}=\frac{1}{2}, \frac{10}{x+1}+\frac{2}{y-1}=\frac{5}{2}, x \neq-1, y \neq 1 \)
(ix) \( \frac{6}{x+y}=\frac{7}{x-y}+3, \frac{1}{2(x+y)}=\frac{1}{3(x-y)} \),
\[
x+y \neq 0, x-y \neq 0
\]
(x) \( \frac{57}{x+y}+\frac{6}{x-y}=5, \frac{38}{x+y}+\frac{21}{x-y}=9 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live