The expression, \( \log _{p} \log _{p} \underbrace{\sqrt[p]{\sqrt[p]{\sqrt[p]{\cdots \sqrt[p]{p}....
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=dRBpFKSV6OQ
The expression, \( \log _{p} \log _{p} \underbrace{\sqrt[p]{\sqrt[p]{\sqrt[p]{\cdots \sqrt[p]{p}}}}}_{n \text { radical sign }} \)
\( \mathrm{P} \)
where \( \mathrm{p} \geq 2, \mathrm{p} \in \mathrm{N} \), when simplified is:
(A) Independent of \( p \), but dependent on \( n \)
(B) Independent of \( \mathrm{n} \), but dependent of \( \mathrm{p} \)
(C) Dependent on both \( \mathrm{p} \) and \( \mathrm{n} \)
(D) Positive
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live