The solution of \( \frac{d^{2} y}{d x^{2}}=\sec ^{2} x+x e^{x} \) is (a) \( y=\log (\sec x)+(x-2...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=mTzcDGaDiJg
The solution of \( \frac{d^{2} y}{d x^{2}}=\sec ^{2} x+x e^{x} \) is
(a) \( y=\log (\sec x)+(x-2) e^{x}+c_{1} x+c_{2} \)
(b) \( y=\log (\sec x)+(x+2) e^{x}+c_{1} x+c_{2} \)
(c) \( y=\log (\sec x)-(x+2) e^{x}+c_{1} x+c_{2} \)
(d) \( y=\log (\sec x)+e^{x}+c_{1} x+c_{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live