Trajectory of a particle in a projectile motion is given as \( y=x-\frac{x^{2}}{80} \). Here, \(....
Trajectory of a particle in a projectile motion is given
\( \mathrm{P} \)
as \( y=x-\frac{x^{2}}{80} \). Here, \( x \) and \( y \) are in metre. For this
W
projectile motion match the following with \( \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2} \).
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline (A) & Angle of projection & (P) & \( 20 \mathrm{~m} \) \\
\hline (B) & \begin{tabular}{l}
Angle of velocity with \\
horizontal after 4s
\end{tabular} & (Q) & \( 80 \mathrm{~m} \) \\
\hline (C) & Maximum height & (R) & \( 45^{\circ} \) \\
\hline (D) & Horizontal range & (S) & \( \tan ^{-1}\left(\frac{1}{2}\right) \) \\
\hline
\end{tabular}
Codes:
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & \( \mathrm{R} \) & \( \mathrm{R} \) & \( \mathrm{P} \) & \( \mathrm{Q} \) \\
(2) & \( \mathrm{R} \) & \( \mathrm{P} \) & \( \mathrm{Q} \) & \( \mathrm{S} \) \\
(3) & \( \mathrm{S} \) & \( \mathrm{Q} \) & \( \mathrm{P} \) & \( \mathrm{R} \) \\
(4) & \( \mathrm{Q} \) & \( \mathrm{R} \) & \( \mathrm{S} \) & \( \mathrm{P} \)
\end{tabular}
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live