\( \vec{p}, \vec{q} \), and \( \vec{r} \) are three mutually perpendicular vectors of the same m...
\( \vec{p}, \vec{q} \), and \( \vec{r} \) are three mutually perpendicular vectors of the same magnitude. If vector \( \vec{x} \) satisfies the equation \( \vec{p} \times((\vec{x}-\vec{q}) \times \vec{p})+\vec{q} \times((\vec{x}-\vec{r}) \times \vec{q})+\vec{r} \times((\vec{x}-\vec{p}) \times \vec{r}=\overrightarrow{0} \) then \( \vec{x} \) is given by
(a) \( \frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r}) \)
(b) \( \frac{1}{2}(\vec{p}+\vec{q}+\vec{r}) \)
(c) \( \frac{1}{3}(\vec{p}+\vec{q}+\vec{r}) \)
(d) \( \frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r}) \)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
2023-06-09 | Equatin of plane containing the two parallel lines.
\( \frac{x+1}{3}=\frac{y-2}{2}=\frac{z}{1} \... |
2023-06-09 | Let \( \vec{u} \) and \( \vec{v} \) be unit vectors. If \( \vec{w} \) is a vector such that \( \... |
2023-06-09 | A line is drawn from the point \( P(1,1,1) \) and perpendicular to a line with direction ratios ... |
2023-06-09 | The locus of a point which moves in such a way that its distance from the line \( \frac{x}{1}=\f... |
2023-06-09 | The shortest distance between the line \( x=y=z \) and the line \( 2 x+y+z-1=0,3 x+y+2 z-2=0 \)
... |
2023-06-09 | Let \( O \) be the origin and \( \overrightarrow{O A}=2 \hat{i}+2 \hat{j}+\hat{k}, \overrightarr... |
2023-06-09 | A plane cutting the axes in \( P, Q, R \) passes through \( (\alpha-\beta, \beta-\gamma, \gamma-... |
2023-06-09 | Let \( a \) and \( b \) be positive real numbers. Suppose \( \overrightarrow{P Q}=a \hat{i}+b \h... |
2023-06-09 | Let \( \hat{i}, \hat{j} \) and \( \hat{k} \) be the unit vectors along the three positive coordi... |
2023-06-09 | If a variable plane cuts the coordinate axes in \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \... |
2023-06-09 | \( \vec{p}, \vec{q} \), and \( \vec{r} \) are three mutually perpendicular vectors of the same m... |
2023-06-09 | Let \( \vec{u}, \vec{v} \) and \( \vec{w} \) be vectors in three-dimensional space, where \( \ve... |
2023-06-09 | Let \( A B C \) be a triangle such that \( \overrightarrow{B C}=\vec{a}, \overrightarrow{C A}=\v... |
2023-06-09 | A line \( L \) passing through origin is perpendicular to the lines
\[
\begin{array}{l}
L_{1}:... |
2023-06-09 | A line is perpendicular to \( x+2 y+2 z=0 \) and passes through \( (0,1,0) \). The perpendicular... |
2023-06-09 | Two lines \( \frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4} \) and \( \frac{x-3}{1}=\frac{y-k}{2}=z \... |
2023-06-09 | Point \( (\alpha, \beta, \gamma) \) lies on the plane \( x+y+z=2 \). Let \( \vec{a}=\alpha \hat{... |
2023-06-09 | For \( p0 \), a vector \( \vec{v}_{2}=2 \hat{i}+(p+1) \hat{j} \) is obtained by rotating the vec... |
2023-06-09 | Let \( \vec{p}=2 \hat{i}+3 \hat{j}+\hat{k} \) and \( \vec{q}=\hat{i}+2 \hat{j}+\hat{k} \) be two... |
2023-06-09 | Let a vector \( \vec{a} \) be coplanar with vectors \( \vec{b}=2 \hat{i}+\hat{j}+\hat{k} \) and ... |
2023-06-09 | If the projection of the vector \( \hat{i}+2 \hat{j}+\hat{k} \) on the sum of the two vectors \(... |