Darwinex

Darwinex

Views:
2,906,511
Subscribers:
52,200
Videos:
733
Duration:
8:10:43:03
United Kingdom
United Kingdom

Darwinex is a British content creator on YouTube with over 52.2 thousand subscribers, publishing 733 videos which altogether total approximately 2.91 million views.

Created on ● Channel Link: https://www.youtube.com/channel/UC6aYa9XjWy-HmHhyp5uN_9g





Top 100 Videos With The Most Comments by Darwinex


Video TitleCommentsCategoryGame
1.Algorithmic Trading via ZeroMQ: Python to MetaTrader (Trade Execution, Reporting & Management)78Tutorial
2.How to Interface Python/R Algorithmic Trading Strategies with MetaTrader 467Guide
3.Which Technical Indicators Provide a Genuine Trading Edge?49
4.Build Algorithmic Trading Strategies with Python & ZeroMQ: Part 248
5.Accumulation / Distribution Versus OBV | Which Indicator is Best?43
6.Bienvenido al movimiento de traders independientes41
7.15) Using a 'percent-based' ATR (Average True Range) Volatility Filter41
8.10) Technical Indicators - Take this Trading Challenge... If you dare!39
9.Algorithmic Trading via ZeroMQ: Python to MetaTrader (Subscribing to Market Data)39
10.Comparing On-Balance Volume, Money Flow Index, and Accumulation/Distribution39
11.1.3) Advanced MQL Techniques - Coding a Multi-Symbol Expert Advisor (EA) for MetaTrader 537
12.28) Lagging vs Leading Indicators & How To Use Them | SMA EMA KAMA MAVs36Guide
13.12.2) Using 'Walk Forward Optimization' to Improve Trading Results | Walk Forward Analysis35
14.Using a Market Noise Filter to improve Trading Edge | Research Results 334
15.Entrevista al DARWIN ZVQ o cómo ganar durante 10 años consecutivos34
16.Las tres fases que llevarán al proveedor de un DARWIN a vivir del trading | La Hora Alfa33
17.4.2) Coding MT5 Custom Performance Criteria in MQL5 using Return / Avg Drawdown instead of Max DD31
18.On-Balance Volume (OBV) Indicator Trading Examples31
19.Using the RVOL Indicator to aid Trend and Trading Range Predictions | Part 730
20.How the RVOL Indicator Informs Breakout Strategies & Helps Avoid False Breakouts30Let's Play
21.17.2) Research Results: Walk Forward Optimization Benefits30
22.How the Kaufman Efficiency Ratio Improves Ichimoku Strategy Performance by Avoiding Noise29
23.9.1) How to Develop Algo Trading Systems using Indicators29Guide
24.The Ichimoku Indicator - Don't Believe Everything you Read!29
25.Using Asset Filtering to improve Trading Strategies | Research Results 129
26.25) How Triple Moving Averages Help Classify Market Regimes | Technical Trading29Let's Play
27.13.2) Avoiding Pitfalls when using Walk Forward Analysis / Optimization (WFO/WFA)28
28.¿95% de perdedores?28
29.RSI vs Stochastic RSI Results - Which is the better indicator for O/B O/S Trading Strategies?28
30.41) Correlation between Stock Indices, FX and Commodities | A Macro-Economic Study27
31.Interactive Brokers y Darwinex: la unión hace más que la fuerza | La Hora Alfa26
32.Classifying Trading Assets using Market Noise26
33.4.2) Improve Optimization Statistical Significance with Multi-Symbol & Multi-Timeframe Backtesting25
34.How the RVOL Relative Volume Indicator can Improve your Trading Strategies | Part 625
35.5.2) Adjust Your Metrics To Reduce Overfitting | Algorithmic Backtesting & Optimization for Alphas25Let's Play
36.1.3) Random vs Long-Term Edge Example | Algorithmic Backtesting & Optimization for Alphas25Let's Play
37.7) Example Usage | DWX ZeroMQ Connector for Algorithmic Trading25
38."Va de hacer crecer el pastel" - analizamos los recientes cambios al modelo Darwinex | La Hora Alfa25
39.7.3) Determining Walk Forward vs Optimization length, using Statistical Significance25
40.5.3) Avoid Live News to Protect Trading Systems | Algorithmic Backtesting & Optimization for Alphas25Let's Play
41.¿Qué diferencia a un DARWIN de su estrategia subyacente?24
42.Measuring Market Noise using 'Price Density' | Improving Trading Strategies23
43.Asset Filtering using the Kaufman Efficiency Ratio23
44.How the Market Facilitation Index can improve your trading strategies23
45.CFDs sobre índices/acciones vs. Futuros23
46.8.1) FX or Stock Indices? Which is best to trade? Pros, cons and considerations...23
47.Indicator Examples | Market Facilitation Index | Trading Indicators in Practice22
48.3 techniques to improve your trading strategy using market noise22
49.The KAMA Indicator Calculation | How and why it works | Kaufman Adaptive Moving Average22
50.6.1) How to Use MT5 Custom Symbols (Imported and Calculated)21Guide
51.1.1) Why a true trading edge is a scarce commodity | Algorithmic Backtesting & Optimization Series21
52.How Market Noise Affects Trend-Following Trading Systems | Whipsaws21
53.18) Using the Aroon Technical Indicator as a Market Regime Trend Filter21
54.Improving the Performance of Intraday Trading Strategies using Time of Day Analysis20
55.Using the Efficiency Ratio to Measure Market Noise | Real-world Trading Strategies20
56.16) Matching Volatility Filters with Timeframes of Trade Open & Close Triggers20
57.12) How to Configure Local Network Farm Agents in the MT5 Strategy Tester20Guide
58.Does the Ichimoku Indicator Work Better With Japanese Yen Forex Pairs? JPY and Ichimoku20
59.11) Improve Trading Results with proper use of Technical Indicators | Training Improvement Process20
60.6.2) MT5 Calculated (Synthetic) Custom Symbols | Enhance your MetaTrader 5 Trading System20
61.2.3) Why Trading Optimizations need a Statistically Significant Sample Size (Number of Trades)20
62.Is Market Noise beneficial to Mean-Reversion Trading Strategies?20
63.Seminario web de bienvenida para inversores20
64.1.4) The Probability Distribution of your Trading Edge | Algo Backtesting & Optimization Series20
65.1.2) How to Code Multi-Symbol EAs (Expert Advisor) in MQL5 for MetaTrader (Strategy Tester and Live)19Guide
66.Interactive Brokers & Darwinex: The Way Forward in 2020 (1/2)19
67.Improve Trading Edge using a Price Density Noise Filter | Research Results 519
68.Ichimoku Calculations for Tenkan-Sen and Kijun-Sen Explained19
69.Does the Ichimoku Indicator work? Backtesting the Trading Strategy Tenkan-Kijun Crossover19
70.Using Time-of-Day Filters to Improve Intraday Trading Strategies19
71.Portfolio Standard Deviation and Portfolio VaR in Excel Spreadsheet19Tutorial
72.La propuesta Darwinex a ESMA19
73.3.1) Controlling Bar Opening in your MetaTrader EAs (Expert Advisors). MQL5, MQL4 Coding Techniques18
74.5) ZeroMQ Client Config | DWX ZeroMQ Connector for Algorithmic Trading18
75.5.3) Algo Trading System Development: Best Practices to Improve Results18
76.10.1) Using CAGR / Mean Drawdown as a Trading System Performance Metric in Backtests & Optimizations18
77.Using Volume Data and Volume Indicators to Improve Trading Decisions | Part 1 | Volume Basics18
78.Troubleshooting Python, ZeroMQ & MetaTrader Configuration for Algorithmic Trading18
79.El hogar del gestor emergente18
80.Quantitative Study Of Noise Volatility Relationship in Price Action | Real-World Trading Approaches18
81.How to Calculate Value at Risk (VaR) to Measure Asset and Portfolio Risk17Guide
82.Understanding Market Noise | Increase your Trading Strategy's Edge17
83.A Trading Strategy using the Kaufman Adaptive Moving Average (KAMA)17
84.Coding RSI and Stochastic RSI Trading Strategy Algos | Overbought-Oversold Tutorial17Tutorial
85.5.2) Coding MT5 Custom Performance Criteria in MQL5 using the Coefficient of Correlation (r)17
86.29) Introduction to Diversification | Reducing Risk by Portfolio Trading17
87.16.1) Sharpe Ratio, Recovery Factor, Return/Max Drawdown, Expected Payoff.. Which is best? (PART 4)17
88.Money Flow Index | Trading Divergences and Overbought/Oversold17
89.8.3) Using 3D Optimization Surfaces to Ensure Robust Parameter Selection | Algorithmic Backtesting17
90.6.2) Finding Inspiration for New Algo Trading Systems17
91.OTC vs. Mercado Regulado17
92.12) Using Indicators for Probability-Based Predictions of Future Price Action in Trading Systems17
93.6.2) Reduce Noise Overfitting by Reducing the Degrees of Freedom in Optimizations17
94.Ichimoku Indicator Trade Entry and Exit Signals17
95.Build Algorithmic Trading Strategies with Python & ZeroMQ: Part 117
96.Free Algorithmic Trading Education and Tutorial Series16Tutorial
97.Coding Incremental VaR in MQL4 and MQL5 for Better Trading Risk Management | Free Code Download16
98.La historia de Darwinex como nunca antes te la habían contado | La Hora Alfa16
99.VaR (Value at Risk), explained16
100.16.2) The answer to which optimization performance criteria works best | Research (PART 5)16