A block of mass \( m_{1}=1 \mathrm{~kg} \) another mass \( m_{2}=2 \mathrm{~kg} \), are placed together (see figure) on an inclined plane with angle of inclination \( \theta \). Various values of \( \theta \) are given in List-I. The coefficient of friction between the
\( \mathrm{P} \) block \( m_{1} \) and the plane is always zero. The coefficient of static and dynamic friction between the block \( \mathrm{m}_{2} \) and the plane are equal to \( \mu=0.3 \). In List-II expressions for the friction on block \( \mathrm{m}_{2} \) are given. Match
W the correct expression of the friction in List-II with the angles given in List-I, and choose the correct option. The acceleration due to gravity is denoted by \( g \).
- [Useful information \( \left.: \tan \left(5.5^{\circ}\right) \approx 0.1 ; \tan \left(11.5^{\circ}\right) \approx 0.2 ; \tan \left(16.5^{\circ}\right) \approx 0.3\right] \)
- \( \quad \begin{array}{r}\text { List-I } \\ \theta=5^{\circ}\end{array} \)
1. \( \mathrm{m}_{2} \mathrm{~g} \sin \theta \)
Q. \( \theta=10^{\circ} \)
2. \( \left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) g \sin \theta \)
R. \( \theta=15^{\circ} \)
3. \( \mu \mathrm{m}_{2} \mathrm{~g} \cos \theta \)
- S. \( \theta=20^{\circ} \)
4. \( \mu\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) g \cos \theta \)
Code:
- (A) P-1, Q-1, R-1, S-3
(B) P-2, Q-2, R-2, S-3
(C) P-2, Q-2, R-2, S-4
(D) P-2, Q-2, R-3, S-3
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live