A bullet of mass \( \mathrm{m} \) and charge \( \mathrm{q} \) is fired towards a solid uniformly...
A bullet of mass \( \mathrm{m} \) and charge \( \mathrm{q} \) is fired towards a solid uniformly charged sphere of radius \( \mathrm{R} \) and total charge \( +\mathrm{q} \). If it strikes the surface of sphere with speed \( \mathrm{u} \), find the minimum speed \( \mathrm{u} \) so that it can penetrate through the sphere. (Neglect all resistance forces or friction acting on bullet except electrostatic forces)
\( \mathrm{P} \)
\( - \) (A) \( \frac{\mathrm{q}}{\sqrt{2 \pi \varepsilon_{0} \mathrm{mR}}} \)
(B) \( \frac{\mathrm{q}}{\sqrt{4 \pi \varepsilon_{0} \mathrm{mR}}} \)
(C) \( \frac{\mathrm{q}}{\sqrt{8 \pi \varepsilon_{0} \mathrm{mR}}} \)
(D) \( \frac{\sqrt{3} \mathrm{q}}{\sqrt{4 \pi \varepsilon_{0} \mathrm{mR}}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live