A charged particle with some initial velocity is projected in a region where non-zero electric a...
A charged particle with some initial velocity is projected in a region where non-zero electric and/or magnetic field are present. In column-I, information about the existence of electric and/or magnetic field and direction of initial velocity of charged particle are given, while in column-II the probable path of the charged particle \( s \) mentioned.
Match the entries of column-I with entries of column-II.
\begin{tabular}{|l|l|c|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{|c|}{ Column-II } \\
\hline A. & \( \begin{array}{l}\overrightarrow{\mathrm{E}}=0, \overrightarrow{\mathrm{B}} \neq 0 \text { and initial velocity } \\
\text { may be at any angle with } \overrightarrow{\mathrm{B}}\end{array} \) & p. & Straight line \\
\hline B. & \( \begin{array}{l}\overrightarrow{\mathrm{E}} \neq 0, \overrightarrow{\mathrm{B}}=0 \text { and initial velocity } \\
\text { may be at any angle with } \overrightarrow{\mathrm{E}}\end{array} \) & q. & Parabola \\
\hline C. & \( \begin{array}{l}\overrightarrow{\mathrm{E}} \neq 0, \overrightarrow{\mathrm{B}} \neq 0, \overrightarrow{\mathrm{E}} \| \overrightarrow{\mathrm{B}} \text { and initial } \\
\text { velocty is } \perp \text { to both }\end{array} \) & r. & Circular \\
\hline D. & \( \begin{array}{l}\overrightarrow{\mathrm{E}} \neq 0, \overrightarrow{\mathrm{B}} \neq 0, \overrightarrow{\mathrm{E}} \text { is perpendicular } \\
\text { to } \overrightarrow{\mathrm{B}} \text { and } \overrightarrow{\mathrm{v}} \text {-perpendicular to } \\
\text { both } \overrightarrow{\mathrm{E}} \text { and } \overrightarrow{\mathrm{B}}\end{array} \) & s. & Helical path. \\
\hline
\end{tabular}
(1) A-(p, r, s); B-(p, q); C-(s); D-(p)
(2) A-(p, r, s); B-(p, q, r); C-(s); D-(p)
(3) A-(p, q); B-(p, r, s); C-(s); D-(p)
(4) A-(p, r, s); B-(p, q); C-(p); D-(s)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live