A differentiable function satisfy the relation \( \ln (f(x+y))=\ln (f(x)) . \ln (f(y)) \forall x....
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=6qtO-U_f1W4
A differentiable function satisfy the relation \( \ln (f(x+y))=\ln (f(x)) . \ln (f(y)) \forall x, y \in R, f(0) \neq 1 \),
P
\( f^{\prime}(0)=\mathrm{e} \) and \( g \) be the inverse of \( f \).
The number of solutions of the equation \( \ln [\ln f(x)]=g^{2}[f(x)]-3 g[f(x)]-5 \) is(are) :
(1) 0
(2) 1
(3) 2
(4) Infinite
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live