A network of resistance is constructed with \( R_{1} \) and \( R_{2...
A network of resistance is constructed with \( R_{1} \) and \( R_{2} \) as shown in the figure. The potential at the points \( 1,2,3, \ldots \ldots ., N \) are \( V_{1}, V_{2}, V_{3}, \ldots \ldots \ldots ., V_{n} \) respectively each having a potential \( K \) time smaller than previous one. Find:
Current that passes through the resistance \( R_{2} \) nearest to the \( V_{0} \) in terms \( V_{0}, K \) and \( R_{3} \).
(A) \( \left[\frac{(\mathrm{K}+1)}{\mathrm{K}^{2}}\right] \frac{\mathrm{V}_{0}}{\mathrm{R}_{3}} \)
(B) \( \left[\frac{(\mathrm{K}-1)}{\mathrm{K}}\right] \frac{\mathrm{V}_{0}}{\mathrm{R}_{3}} \)
(C) \( \left[\frac{(\mathrm{K}-1)}{\mathrm{K}^{2}}\right] \frac{\mathrm{V}_{0}}{\mathrm{R}_{3}} \)
(D) \( \left[\frac{(\mathrm{K}+1)}{\mathrm{K}^{2}}\right] \frac{\mathrm{V}_{0}}{\mathrm{R}_{3}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live