A particle is projected from level ground. Assuming projection point as origin, \( x \)-axis alo...
A particle is projected from level ground. Assuming projection point as origin, \( x \)-axis along horizontal and \( y \)-axis along vertically upwards. If particle moves in \( x-y \) plane and its path is given by \( y=a x-b x^{2} \) where \( \mathrm{a}, \mathrm{b} \) are positive constants. Then match the physical quantities given in column-I with the values given in column-II. ( \( \mathrm{g} \) in column-II is acceleration due to gravity.)
\begin{tabular}{|l|l|c|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline A. & \( \begin{array}{l}\text { Horizontal component of } \\
\text { velocity }\end{array} \) & p. & \( a / b \) \\
\hline B. & Time of flight & q. & \( \frac{a^{2}}{4 b} \) \\
\hline C. & Maximum height & r. & \( \sqrt{\frac{g}{2 b}} \) \\
\hline D. & Horizontal range & s. & \( \sqrt{\frac{2 a^{2}}{b g}} \) \\
\hline
\end{tabular}
(1) A-(r); B-(s); C-(q); D-(p)
(2) A-(p); B-(s); C-(q); D-(r)
(3) A-(q); B-(r); C-(p); D-(s)
(4) A-(s); B-(r); C-(q); D-(p)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live