A particle \( P \) moves with constant speed on a circle in anticlockwise direction as shown in figure.
Match Column I with Column II:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Column I } & \multicolumn{2}{|r|}{ Column II } \\
\hline A. & \multicolumn{2}{|c|}{\begin{tabular}{l}
Angular momentum \\
of the particle about \\
\( O \)
\end{tabular}} & P. & \begin{tabular}{l}
Is minimum \\
when the particle \\
is at \( A \)
\end{tabular} \\
\hline B. & \multicolumn{2}{|c|}{\begin{tabular}{l}
Angular momentum \\
of the particle about \( E \)
\end{tabular}} & Q. & \begin{tabular}{l}
Is maximum \\
when the particle \\
is at \( A \)
\end{tabular} \\
\hline C. & \multicolumn{2}{|c|}{\begin{tabular}{l}
Angular velocity of \\
the particle about \( O \)
\end{tabular}} & \( \mathrm{R} \). & \begin{tabular}{l}
Does not remain \\
constant
\end{tabular} \\
\hline D. & \multicolumn{2}{|c|}{\begin{tabular}{l}
Angular velocity of \\
the particle about \( E \)
\end{tabular}} & \( \mathrm{~S} \). & Remains constant \\
\hline A & B & C & & D \\
\hline P & Q, S & \( \mathrm{R} \) & & \( P, R \) \\
\hline \( \mathrm{S} \) & Q, R & \( \mathrm{S} \) & & \( P, R \) \\
\hline P & \( \mathrm{Q}, \mathrm{R} \) & Q & & \( \mathrm{P}, \mathrm{S} \) \\
\hline Q & Q, S & P & & \( \mathrm{P}, \mathrm{Q} \) \\
\hline
\end{tabular}
P
W